

800mA Synchronous Buck DC/DC Converter

Description

The SC11A08 is high efficiency synchronous, PWM step-down DC/DC converters working under an input voltage range from 2.5V to 5.5V. This feature makes the SC11A08 suitable for single Li-Lon battery-powered applications. 100% duty cycle capability extends battery life in portable devices, while the quiescent current is 200 μ A with no load, and drops to < 1 μ A in shutdown.

The internal synchronous switch is desired to ncrease efficiency without an external Schottky diode. The 1.0 MHz fixed switching frequency allows the using of tiny, low profile inductors and ceramic capacitors, which minimized overall solution footprint.

The SC11A08 converters are available in the industry standard SOT-23-5 power packages (or upon request).

Features

- Up to 95% Efficiency
- Current Mode Operation for Excellent Line and Load Transient Response
- Low Quiescent Current: 200μA
- Low Switch on Resistance RDS(ON), Internal Switch: 0.35Ω
- Output Voltage: 5.5V ~ 0.6V
- Automatic PWM/PFM Mode Switching
- No Schottky Diode Required
- 1.2MHz Fixed Frequency Switching
- Short-Circuit Protection
- Shutdown Quiescent Current: < 1μA
- Low Profile SOT-23-5 Package (lead-free packaging is now available)

Applications

- Digital cameras and MP3
- Palmtop computers / PDAs
- Portable media players
- Wireless handsets and DSL modems
- Cellular phones
- PC cards

Typical Application Circuit

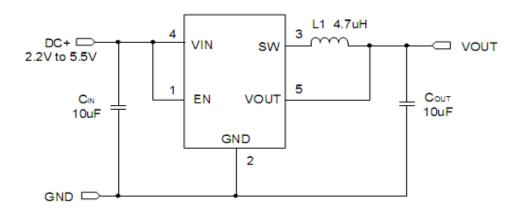
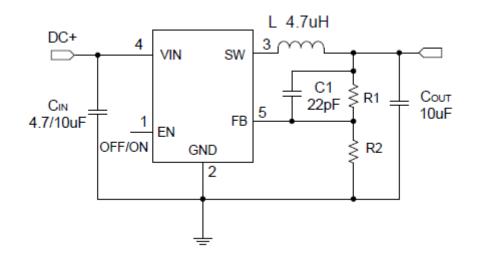
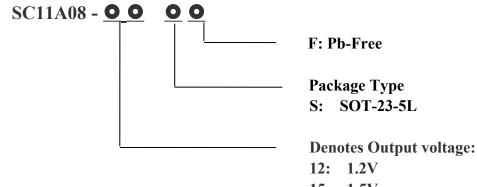


Figure 1: Fixed Output Voltage




Figure 2: Adjustable Output Voltage: $Vout = 0.6V \cdot [1 + (R1/R2)]$.

Pin Configurations

PIN SOT-23-5L	NAME	DESCRIPTION	
1.	EN	En Control Input. Forcing this pin above 1.5V enables the par Forcing this pin below 0.3V can shuts down the device. In shutdown all functions are disabled drawing<1mA supply current. Do not leave EN floating.	
2.	GND	Ground.	
3.	SW	Switch Node Connection to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.	
4.	VIN	Main Supply Pin. It must be closely decoupled to GND, Pin 2, with a $10\mu F$ or greater ceramic capacitor.	

Package Type	Pin Configurations		
SC11A08 SOT-23-5L	EN 1		

15: 1.5V 18: 1.8V

30: 3.0V

30: 3.0V

33: 3.3V

A: Adjustable

		* Output feedback. Receives thefeedback voltage from an external		
		resistive divider across the output. In the adjustable version, the output		
5.	FB/VOUT	voltage is set by a resistive divider according to the following		
		formula: $VOUT = 0.6V \cdot [1 + (R1/R2)].$		
		* Output Pin. In the nonadjustable version, the output voltage is fixed.		

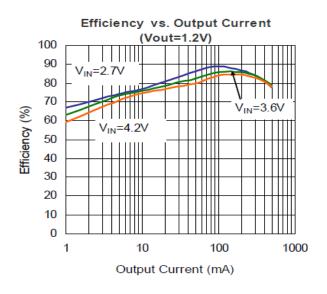
Pin Description

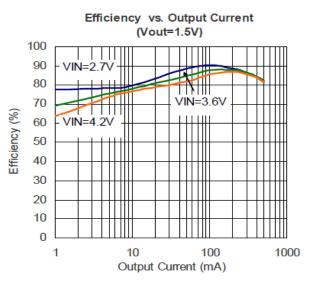
Absolute Maximum Ratings

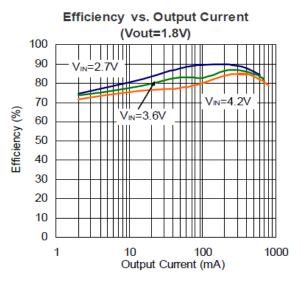
	Input Supply Voltage	2.5V to :	5.5V
•	Ven, Vsw0.3V	to VIN +	0.3V
	VIN, VOUT	-0.3V to	o 6V
	Isw	1	1.3A
•	Maximum Junction Temperature	12	25℃
	Operating Ambient Temperature Range	-40°C to 8	35℃
•	Storage Temperature Range	55℃ to 12	25℃
•	Lead Temperature (Soldering, 10 sec)	3(00°C

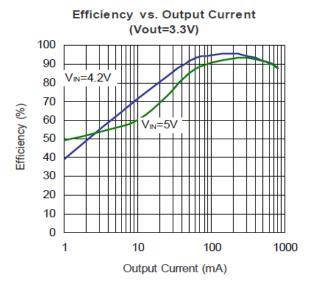
Electrical Characteristics

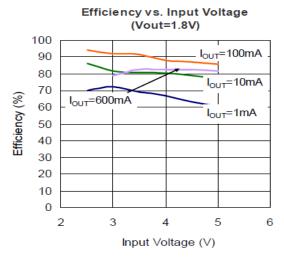
(Operating Conditions: TA=25 °C,VIN=3.6V unless otherwise specified.)

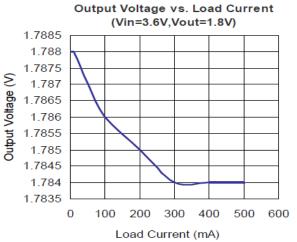

SYMBOL	PARAMETER	CONDITIONS	SC11A08			LIMITO
	FARANIETER		MIN	TYP	MAX	UNITS
Vin	Input Voltage		2.5		5.5	V
Vout	Output Voltage	I OUT = 100mA, R1/R2=2	1.75	1.8	1.85	V
V _{FB}	Regulated Voltage		0.588	0.6	0.612	V
IFB	Feedback Current				±30	μΑ
ΔVFB	Vref	V _{IN} =2.5V~5.5V		0.03	0.4	%/V

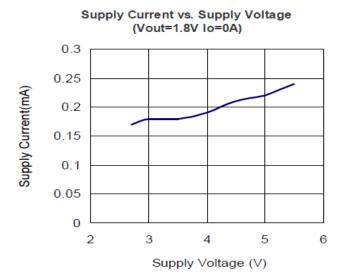


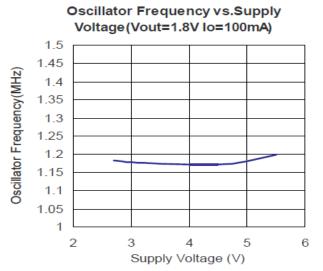

Fosc	Oscillator Frequency	$V_{FB} = 0.6V or \\ V_{OUT} = 100\%$	0.9	1.0	1.1	MHz
IQ	Quiescent Current	$V_{FB} = 0.5V$ or $V_{OUT} = 90\%$, $I_{LOAD} = 0A$		200	300	μА
Is	Shutdown Current	$V_{EN} = 0V, V_{IN} = $ $4.2V$		0.1	1	μА
Ірк	Peak Inductor Current	V _{IN} = 3V, V _{FB} = 0.5V or V _{OUT} = 90%, Duty Cycle < 35%	0.7	0.9	1	A
RPFET	RDS(ON) of P-Channel FET	$I_{SW} = 100 \text{mA}$		0.3		Ω
Rnfet	RDS(ON) of N-Channel FET	Isw = -100mA		0.39		Ω
EFFI	Efficiency	When connected to ext. components V _{IN} =EN=3.6 V, I _{OUT} =100mA		93		%
ΔVout	Vout Line Regulation	V _{IN} =2.5V~5.5V		0.03	0.3	%/V
VLOADREG	Vout Load Regulation			0.33		%

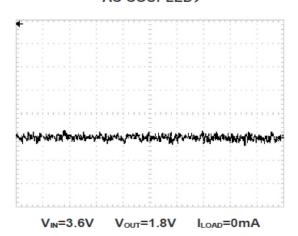

TypicalPerformance Charcterristics

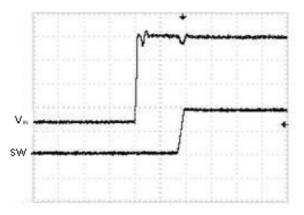


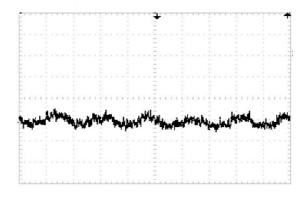











Output Noise (100mV/DIV 2ms/DIV AC COUPLED)

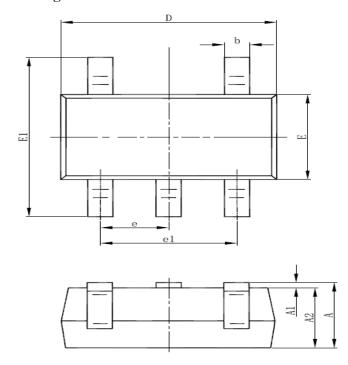
Start -up from Shutdown (1V/DIV 100ns/DIV)

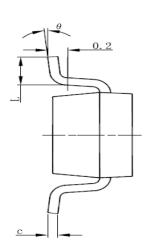
Output Noise (10mV/DIV 200ns/DIV AC COUPLED)

V_{IN}=3.6V V_{OUT}=1.8V I_{LOAD}=200mA

PCB Layout Guidelines

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the SC11A08. These items are also illustrated graphically in Figures 2. Check the following in your layout:


- 1. The power traces, consisting of the GND trace, the SW trace and the VIN trace should be kept short, direct and wide.
- 2. Put the input capacitor as close as possible to the device pins (VIN and GND).
- 3. SW node is with high frequency voltage swing and should be kept small area. Keep


- analog components away from SW node to prevent stray capacitive noise pick-up.
- 4. Connect all analog grounds to a command node and then connect the command node to the power ground behind the output capacitors.
- 5. Keep the (-) plates of CIN and COUT as close as possible.

Packaging Information

SOT-23-5L Package Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Syllibol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	