## Low Dropout Linear Regulator

#### Description

The SC21L03 is 300 mA low dropout linear regulator optimized to provide a high performance solution to low power system.

The device offers a new level of cost-effective performance in cellular phones, laptop and notebook computers, and other portable devices. Proprietary design techniques ensure highperformance.

The SC21L03 is designed to make use of low cost ceramic capacitors which ensure the stability of the output current, and enhance the efficiency in order to prolong the battery life of those portable devices.

The SC21L03 regulators are available in the industry standard SOT-23-5/SC70-5 power packages (or upon request).

#### **Features**

- Input Voltage: 1.8V~5.5V
- Output Voltage: 1.25V~5.0V
- Dropout Voltage: <350mV while output voltage≤1.8V; <200mV while output voltage≥2.8V
- 0.47µF~10µF Ceramic Capacitors Ensures the Stability
- Overload/over Temperature Protection
- Package: SOT-23-5/SC70-5 (lead-free packaging is now available)
- Specified from: 40°C~+ 85°C
- High Ripple Rejection : 70dB @1kHz

## **Applications**

- MP3/MP4 Players
- Cellular phones, radiophone, digital cameras, and portable electronics
- Laptop/notebook/palmtop computers
- Bluetooth and other radio products
- Battery chargers
- Disk driver
- Portable devices



## **Order Information**

| PART        | Vout(V) | MARK | PACKAGE         |
|-------------|---------|------|-----------------|
| SC21L03-CES | 1.8     | 4XK5 | SOT-23-5        |
| SC21L03-HES | 2.5     | 4XY5 | SOT-23-5        |
| SC21L03-EES | 2.8     | 4XX5 | SOT-23-5        |
| SC21L03-FES | 3.0     | 4XZ5 | SOT-23-5        |
| SC21L03-GES | 3.3     | 4B25 | SOT-23-5        |
| SC21L03-IES | 1.3     |      | SOT-23-5        |
| SC21L03-KES | 1.2     |      | SOT-23-5        |
| SC21L03-CBS | 1.8     | DG   | SOT-353-5(SC70) |
| SC21L03-EBS | 2.8     | EG   | SOT-353-5(SC70) |
| SC21L03-FBS | 3.0     | CG   | SOT-353-5(SC70) |
| SC21L03-GBS | 3.3     | HG   | SOT-353-5(SC70) |

## **Typical Applications Circuit**



Figure 1: Typical Application Circuit

# **Pin Configurations**

| Package Type         | Pin Configurations                    |  |
|----------------------|---------------------------------------|--|
| SC21L03<br>SOT-23-5L | VIN 1 • 5 VOUT<br>GND 2<br>EN 3 4 N/C |  |



## **Pin Description**

| PIN<br>SOT-23-5L | NAME | DESCRIPTION                                                            |  |
|------------------|------|------------------------------------------------------------------------|--|
| 1                | VIN  | Supply voltage input.                                                  |  |
| 2                | GND  | Ground.                                                                |  |
| 3                | EN   | En Control Input (High Enable).                                        |  |
| 4                | N/C  | No used.                                                               |  |
| 5                | VOUT | Output Pin. In the nonadjustable version, the output voltage is fixed. |  |

## **Absolute Maximum Ratings**

|   | Supply Input Voltage 6V                     |
|---|---------------------------------------------|
|   | Power Dissipation, PD @ TA = 25°C           |
|   | SOT-23-5 400mW                              |
|   | SC-70-5300mW                                |
|   | Lead Temperature (Soldering, 10 sec.)+300°C |
| • | Storage Temperature Range                   |

# **Recommended Operating Conditions**

| Supply Input Voltage       | 1.8V to 5.5V     |
|----------------------------|------------------|
| EN Input Voltage           | 0V to 5.5V       |
| Junction Temperature Range | -40°C to + 125°C |
| Ambient Temperature Range  | -40°C to +85°C   |



#### **Electrical Characteristics**

SC21103-CES: Operating Conditions: TA=25°C,V IN=5V, CIN = COUT =1uF, unless otherwise specified.

| PARAMETER                                           | CONDITIONS                                                                                         | MIN | TYP  | MAX | UNITS |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-----|------|-----|-------|--|
| Output Voltage                                      | I <sub>OUT</sub> = 10mA                                                                            |     | 1.8  |     | v     |  |
| Output Voltage Accuracy                             |                                                                                                    | -2  |      | 2   | %     |  |
| Input Voltage Range                                 |                                                                                                    | 1.8 |      | 5.5 | v     |  |
| Quiescent Current                                   | $2.2V \le V_{IN} \le 5.5V$                                                                         |     | 90   |     | μA    |  |
| Shutdown Current                                    | V <sub>EN</sub> = 0V, V <sub>IN</sub> = 5V                                                         |     | 0.02 |     | μA    |  |
| Drop Out Voltage V <sub>IN</sub> - V <sub>OUT</sub> | I <sub>OUT</sub> =150mA, V <sub>OUT</sub> ≤1.8V<br>I <sub>OUT</sub> =150mA, V <sub>OUT</sub> ≥2.8V |     | 150  |     | mV    |  |
| Overload Limited                                    | V <sub>OUT</sub> = 0V                                                                              |     | 300  |     | mA    |  |
| Line Regulation                                     | $3V \le V_{IN} \le 5V$ , $I_{OUT} = 0mA$                                                           |     | 4    |     | mV    |  |
| Load Regulation                                     | 0mA ≤ I <sub>OUT</sub> ≤ 100mA                                                                     |     | 30   |     | mV    |  |
| Ripple Rejection (Note 3)                           | l <sub>ουτ</sub> = 100 mA, f=1KHz                                                                  |     | 70   |     | dB    |  |
| V <sub>OUT</sub> Temperature Coefficient            | I <sub>OUT</sub> = 1mA                                                                             |     | 100  |     | ppm/℃ |  |
| Thermal Shutdown                                    |                                                                                                    |     | 160  |     | C     |  |
| Temperature                                         |                                                                                                    |     |      |     |       |  |
| EN flick? Makers                                    | T <sub>A</sub> =25°C                                                                               | 1.5 |      | VIN | %     |  |
| EN High Voltage                                     | - 40℃ ≤ T <sub>A</sub> ≤ 80℃                                                                       | 1.7 |      | VIN |       |  |
|                                                     | T <sub>A</sub> =25°C                                                                               | 0.5 |      | 0.5 |       |  |
| EN LOW Voltage                                      | - 40℃ ≤ T <sub>A</sub> ≤ 80℃                                                                       |     |      | 0.2 | %     |  |

**Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. The device is not guaranteed to function outside its operating conditions.

Note 3. The denotes is reliable by designed.



## **PTypical Performance Characteristics**



























Output Voltage (V)

3.5

4

Input Voltage (V)

4.5

5

5.5

6







# **Application Information**

The basic SC21L03 application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load

#### **Output and Input Capacitor Selection**

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle Vout/VIN.To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMScurrent must be used. The maximum RMS capacitor current is given by:

$$C_{IN} \text{ required } I_{RMS} \cong I_{OMAX} \frac{\left[V_{OUT} (V_{IN} - V_{OUT})\right]^{1/2}}{V_{IN}}$$

This formula has a maximum at  $V_{IN}= 2V_{OUT}$ , where IRMS=IOUT/2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer'sripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Always consult the manufacturer if there is any question.

The selection of Cout is driven by the required effective series resistance (ESR).

Typically, once the ESR requirement for Cour has current and begins with the selection of the inductor value and operating frequency followed by CIN and Cour.

been met, the RMS current rating generally far exceeds the IRIPPLE(P-P) requirement. The output ripple $\triangle$ VOUT is determined by:

$$\Delta V_{OUT} \simeq \Delta I_{L} \left( \text{ESR} + \frac{1}{8 \text{fC}_{OUT}} \right)$$

Where f=operating frequency, Cout=output capacitance and  $\triangle$  IL=ripple current in the inductor. For a fixed output voltage, the output ripple is highest at maximum input voltage since  $\triangle$ IL increases with input voltage.

Aluminum electrolytic and dry tantalum capacitors are both available in surface mount configurations. In the case of tantalum, it is critical that the capacitors are surge tested for use in switching power supplies. An excellent choice is the AVX TPS series of surface mount tantalum. These are specially constructed and tested for low ESR so they give the lowest ESR for a given volume. Other capacitor types include Sanyo POSCAP, Kemet T510 and T495 series, and Sprague 593D and 595D series. Consult the manufacturer for other specific recommendations.

# Packaging Information



#### **SOT-23-5L Package Outline Dimension**





| Symbol  | Dimensions In Millimeters |       | Dimensions In Inches |       |
|---------|---------------------------|-------|----------------------|-------|
| C ymbor | Min                       | Max   | Min                  | Max   |
| A       | 1.050                     | 1.250 | 0.041                | 0.049 |
| A1      | 0.000                     | 0.100 | 0.000                | 0.004 |
| A2      | 1.050                     | 1.150 | 0.041                | 0.045 |
| b       | 0.300                     | 0.500 | 0.012                | 0.020 |
| с       | 0.100                     | 0.200 | 0.004                | 0.008 |
| D       | 2.820                     | 3.020 | 0.111                | 0.119 |
| E       | 1.500                     | 1.700 | 0.059                | 0.067 |
| E1      | 2.650                     | 2.950 | 0.104                | 0.116 |
| е       | 0.950(BSC)                |       | 0.037(BSC)           |       |
| e1      | 1.800                     | 2.000 | 0.071                | 0.079 |
| L       | 0.300                     | 0.600 | 0.012                | 0.024 |
| θ       | 0°                        | 8°    | <b>0</b> °           | 8°    |

**SC70-5 Package Outline Dimension** 









| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |       |
|--------|---------------------------|-------|----------------------|-------|
| Gymbol | Min                       | Max   | Min                  | Max   |
| A      | 0.900                     | 1.100 | 0.035                | 0.043 |
| A1     | 0.000                     | 0.100 | 0.000                | 0.004 |
| A2     | 0.900                     | 1.000 | 0.035                | 0.039 |
| b      | 0.150                     | 0.350 | 0.006                | 0.014 |
| С      | 0.080                     | 0.150 | 0.003                | 0.006 |
| D      | 2.000                     | 2.200 | 0.079                | 0.087 |
| E      | 1.150                     | 1.350 | 0.045                | 0.053 |
| E1     | 2.150                     | 2.450 | 0.085                | 0.096 |
| е      | 0.650 TYP                 |       | 0.026 TYP            |       |
| e1     | 1.200                     | 1.400 | 0.047                | 0.055 |
| L      | 0.525 REF                 |       | 0.021 REF            |       |
| L1     | 0.260                     | 0.460 | 0.010 0.018          |       |
| θ      | 0°                        | 8°    | 0°                   | 8°    |