

3A 、40V Synchronous Rectified

Step-Down Converte

Features

- 4.75V to 40V Wide Input Operating Range
- Output Adjustable from 0.92V to 15V
- Up to 3A Output Current
- Up to 95% Efficiency
- **3µA Low Shutdown Current**
- 0.1Ω Internal DMOS Output Switch
- Fixed 200kHz Switching Frequency
- Internal Soft Start
- Programmable Output Current Threshold
- Programmable Output Over Voltage Threshold
- Secondary Cycle-by-Cycle Current Limit
- Thermal Shutdown
- Input Supply Undervoltage Lockout
- Available SOP-8P Package
- RoHS Compliant and 100% Lead(Pb)-Free Halogen-Free

Applications

- Car Charger/Adaptor
- Rechargeable Portable Devices
- Distributive Power Systems
- Pre-regulator for Linear Regulators
- Distributed Power Systems
- Networking Systems

Typical Application Circuit

Description

The SC88DY55A is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The SC88DY55A operates with an input voltage range from 4.75V to 40V and the output voltage is externally set from 0.92V to 15V with a resistor divider. The output current threshold is programmed by an external resistor. The SC88DY55A enters into the CC (constant current) mode when output reaches over current threshold. The OV (over voltage) threshold is programmed an external resistor divider. bv The SC88DY55A stops switching when output reaches over voltage threshold.

Fault condition protection includes secondary cycle-by-cycle current limit and thermal shutdown. In shutdown mode the regulator draws $3\mu A$ of supply current. Internal soft-start minimizes the inrush supply current and the output overshoot at initial startup. The SC88DY55A require a minimum number of external components.

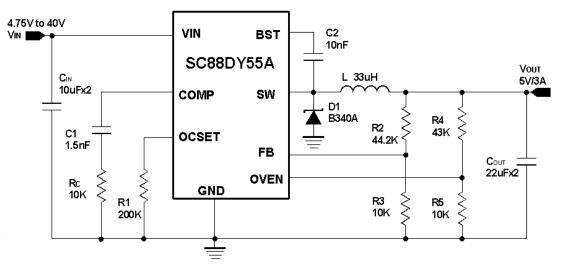


Figure 1: Typical Application Circuit

Pin Description

Pin Configurations

PIN	MANEg	е Туре	PiACSGREBTERDNs					
1.	BST SC88D	0	Gate Driver Boostran e n-chan BST 1		Dispersive nor BOVEN DOCSET	or great	e gate driver er capacitor	
2.	vsoP-	Input Supp 8009nect IN large value	ly Pin. If	Thermal Pad	III COMP	gh side p	ower switch. th a suitably	
3.	SW	Power Switcher Output. Connect the output LC filter from SW to the output.						
4.	GND	Ground.	Ground.					
5.	FB	Output Feedback Input. FB senses the output voltage to regulate that voltage. Connect FB to an external resistor divider to set the output voltage. The feedback threshold is 0.92V.						
6.	COMP	Loop compensation pin. Connect a series RC network from COMP to GND to compensate the regulation control loop.						
7.	OCSET	OC (output current) threshold setting pin. Connect a resistor from OCSET to GND to program the output current.						
8.	OVEN	OV (output over voltage) threshold setting pin and enable Input. Must Connect to a resistor divider between V_{OUT} and GND to set the output over voltage threshold and achieve automatic startup. Drive OVEN logic high to turn off the regulator. Don't leave OVEN pin floating.						
9.	Thermal Pad	Ground. (Thermal pad must be connected to the ground of PCB.)						

Block Diagram

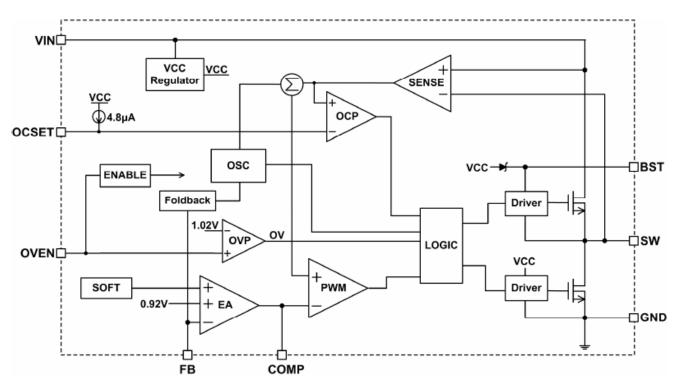


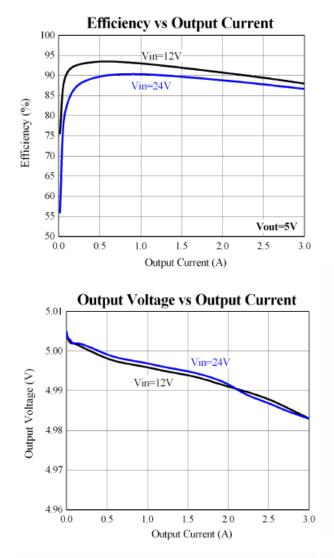
Figure 2: Block Diagram

Absolute Maximum Ratings

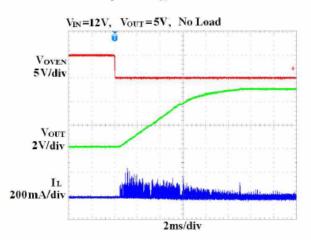
Input Supply Voltage (VIN)	0.3V to 42V
• Switch Voltage(Vsw)	1V to V _{IN} +0.3V
Boost Voltage Vs	w - 0.3~Vsw +6V
All Other Pins	0.3V to 6V
Maximum Junction Temperature	150℃
Operating Ambient Temperature Range	−40°C to 85°C
Storage Temperature Range	–65℃ to 150℃

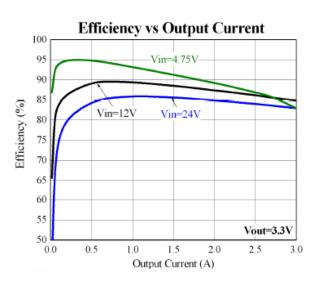
Lead Temperature (Soldering, 10	0 sec)	260℃
Operating Temperature Range) 85℃

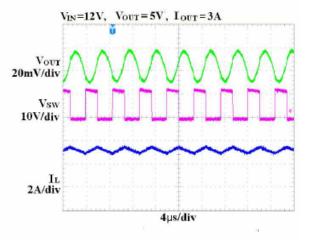
Electrical Characteristics

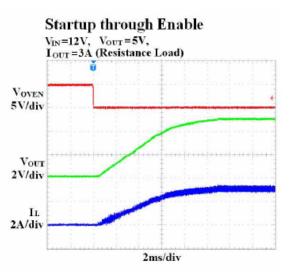

(Operating Conditions: TA=25 °C,VIN=12V unless otherwise specified.)

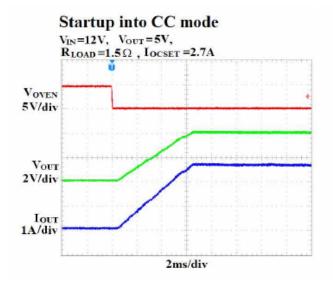
DADAMETED	CVMDOI	CONDITION	SC88DY55A			UNITO
PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
Input Voltage	V _{IN}		4.75		40	V
Output Voltage	Vout		0.92		15	V
Shutdown Current	Is	$V_{OVEN} = 5V$		3		μΑ
Quiescent Current	Iq	$V_{OVEN} = 0V, V_{FB} = 1V$		0.55	1	mA
Feedback Voltage	V _{FB}	$4.75V \leq V_{IN} \leq 40V$	0.9	0.92	0.94	V
Error Amplifier Transconductance	GEA	$\Delta IC = \pm 10 \mu A$	500	680	900	μA/V
Switch Leakage Current		$V_{OVEN} = 5V, V_{SW} = 0V$			10	μΑ
Oscillation Frequency	Fosc1		170	200	230	KHz
Short circuit Oscillation Frequency	Fosc2	$V_{FB} = 0V$		60		KHz
Maximum Duty Cycle	DMAX	$V_{FB} = 1.0V$		90		%
Current Limit			3.6	4.4	5.2	Α
Current Sense Transconductance		Output Current to VCOMP		4		A/V
Minmum On Time				120		ns
High-Side Switch-On Resistance				0.1	0.16	Ω
Low-Side Switch-On Resistance				10		Ω
OVEN Enable Threshold Voltage					0.4	V
OVEN Shutdown Threshold Voltage			2			V
OCSET Pull Up Current			4.75	5.0	5.25	v
Input Under Voltage Lockout Threshold			3.7	4.3	5.0	V
Input Under Voltage Lockout Threshold Hysteresis		V _{IN} Rising		210		mV
Soft-Start Current		$V_{SS} = 0V$		6		μA
Soft-Start Period		$C_{SS} = 0.1 \mu F$		10		ms
Thermal Shutdown				160		°C

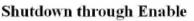

Typical Performance Characteristics

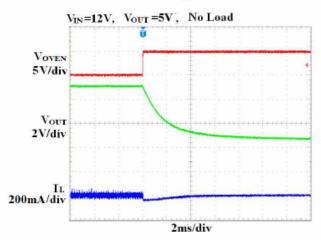

V_{IN}=12V, V_{OUT}=5V, C_{IN}=10 µ F×2, C_{OUT}=22 µ F×2, L1=33 µ H, T_A=25°C, unless otherwise noted.

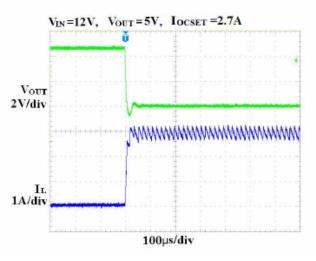


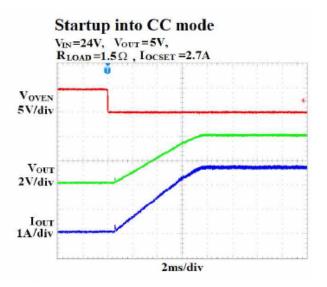

Startup through Enable

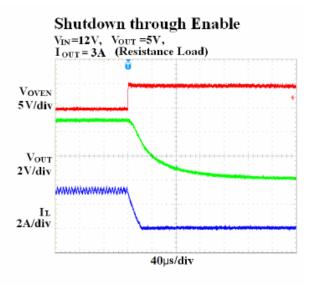


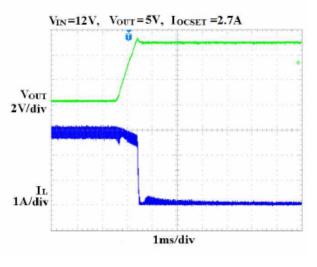

Steady State

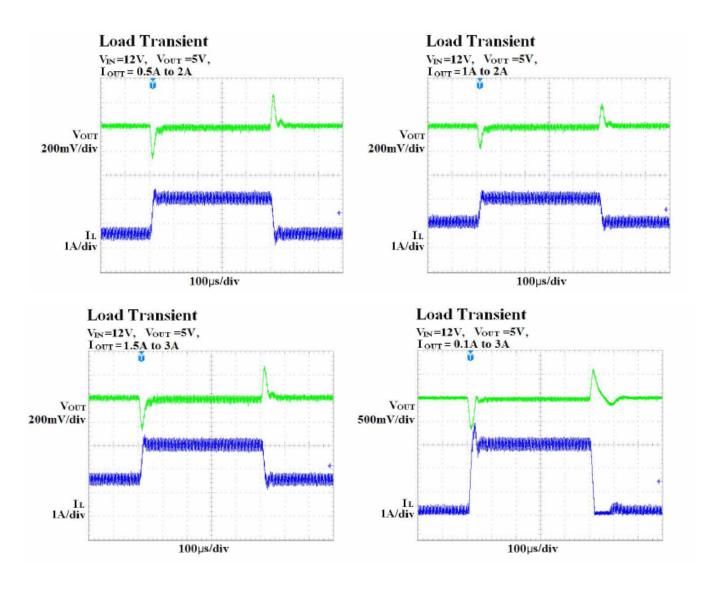









Short Circuit



Short Circuit Recovery

Functional Description

The SC88DY55A is current-mode step-down switching regulator. The device regulates an output voltage as low as 0.92V from a 4.75V to 40V input power supply. The device can provide up to 3Amp continuous current to the output. The SC88DY55A uses current-mode architecture to control the regulator loop. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal error amplifier. The output current of the transconductance error amplifier is presented at COMP pin where a RC network compensates the regulator loop. Slope compensation is internally added to eliminate subharmonic oscillation at high duty cycle. The slope compensation adds voltage ramp to the inductor current signal which reduces maximum inductor peak current at high duty cycles.

The device uses an internal Hside n-channel switch to step down the input voltage to the regulated output voltage. Since the Hside n-channel switch requires gate voltage greater than the input voltage, a boostrap BST capacitor is connected between SW and BST to drive the n-channel gate. The BST capacitor is internally charged while the switch is off. An internal

10_ switch from SW to GND is added to insure that SW is pulled to GND when the switch is off to fully charge the BST capacitor.

The device has programmable OC(output current) threshold setting by OCSET resistor. Output current will increase until it reaches the OC threshold. At this point, the device will transfer from regulating output voltage to regulating output current, and the output

voltage will drop with the increasing load.

The device has programmable OV(over voltage) threshold setting by OVEN resistor divider between VOUT and GND. When the output voltage VOUT is higher than OV threshold, the device will stop switching, then V_{OUT} will decrease until it is below OV threshold.

Application Information

Setting the Output Voltage

The output voltage is set through a resistive voltage divider (see Figure1). The voltage divider divides the output voltage down by the ratio:

$$V_{FB} = V_{OUT} \times R3/(R2 + R3) = 0.92V$$

Thus the output voltage is :

$$V_{OUT} = 0.92V \times (R2 + R3)/R3$$

Choose R3 value in the range 10k to 100k, R2 is determined by :

$$\mathbf{R2} = \left(\mathbf{V}_{\text{OUT}} / \mathbf{0.92} - 1\right) \times \mathbf{R3}$$

For example, for a 3.3V output voltage, R3 is $10K\Omega$, and R2 is 25.8KΩ.

Setting the Output Current Threshold

The output current threshold is set by a resistor connected between the OCSET pin and GND. The output current threshold is proportional to the **OCSET** pin voltage. The current flow out of **OCSET** pin is roughly 5 µ A and the transconductance gain from OCSET to output is roughly 4A/V. To determine the proper resistor value for a desired output current threshold, please refer to Figure 3 below.

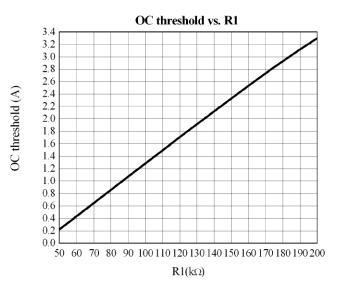


Figure 3. Curve for Setting OC Threshold

Setting the Output Over Voltage Threshold

The output over voltage threshold is set by a resistor divider connected between VOUT and GND. The OVEN voltage is set by the resistor R4 and R5 (see Figure 1), the OVEN voltage is:

 $V_{OVEN} = V_{OUT} \times R5 / (R4 + R5)$

The OVEN pin voltage threshold is 1.02V. When OVEN voltage is higher than 1.02V, the regulator stop switching until OVEN voltage fall below 1.02V. Thus the output over voltage threshold is:

 $V_{ov} = 1.02V \times (R4 + R5) / R5$

Choose R4 and R5 value to set the output over voltage threshold.

Inductor

The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current and lower output ripple voltage. However, the larger value inductor has a larger physical size, higher series resistance, and lower saturation current. Choose an inductor that does not saturate under the worst-case load conditions. A good rule for determining the inductance is to allow the peak-to- peak ripple current in the inductor to be approximately 30% of the maximum load current. Also, make sure that the peak inductor current (the load current plus half the peak-to-peak inductor ripple current) is below the 3.6A minimum peak current limit. The inductance value can be calculated by the equation:

$$\mathbf{L} = \mathbf{V}_{\text{OUT}} \times (\mathbf{V}_{\text{IN}} - \mathbf{V}_{\text{OUT}}) / (\mathbf{V}_{\text{IN}} \times \mathbf{f} \times \Delta \mathbf{I})$$

Where Vout is the output voltage, VIN is the input voltage, f is the switching frequency, and \triangle I is the peak-to-peak inductor ripple current.

Input Capacitor

The input current to the step-down converter is discontinuous, and therefore an input capacitor C1 is required to supply the AC current to the step-down converter while maintaining the DC input voltage. A low ESR capacitor is required to keep the noise minimum at the IC. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. The input capacitor value should be greater than 10μ F, and the RMS current rating should be greater than approximately 1/2 of the DC load current. In Figure 1, all ceramic capacitors should be placed close to the SC88DY55A.

Output Capacitor

The output capacitor is required to maintain the DC

output voltage. Low ESR capacitors are preferred to keep the output voltage ripple low. The characteristics of the output capacitor also affect the stability of the regulator control loop. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is estimated to be:

$$V_{RIPPLE} = 1.4 \times V_{IN} \times (f_{LC} / f)^2$$

Where VRIPPLE is the output ripple voltage, VIN is the input voltage, fLC is the resonant frequency of the LC filter, f is the switching frequency.

Output Rectifier Diode

The output rectifier diode supplies the current to the inductor when the high-side switch is off. A schottky diode is recommended to reduce losses due to the diode forward voltage and recovery times.

Loop Compensation

The system stability is controlled through the COMP pin. COMP is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to control the feedback loop. The DC loop gain is:

$$\mathbf{A}_{\text{VDC}} = \mathbf{V}_{\text{FB}} / \mathbf{V}_{\text{OUT}} \times \mathbf{A}_{\text{VEA}} \times \mathbf{G}_{\text{CS}} \times \mathbf{R}_{\text{LOAD}}$$

Where: VFB is the feedback threshold voltage, 0.92V Vout is the desired output regulation voltage AVEA is the transconductance error amplifier voltage gain, 400 V/V Gcs is the current sense gain, (roughly the output current divided by the voltage at COMP), 4A/V RLOAD is the load resistance (Vout / Iout where Iout is the output load current).The system has 2 poles. One is

is due to the output capacitor (C2). These are:

$$f_{P1}=G_{EA}/(2\pi \times A_{VEA} \times C3)$$

Where P1 is the first pole, and GEA is the error

due to the compensation capacitor (C3), and the other

amplifier transconductance (820 μ A/V). and

$$f_{P2}=1/(2\pi \times A_{LOAD} \times C2)$$

The system has one zero of importance, due to the compensation capacitor (C3) and the compensationresistor (R1). The zero is:

$$f_{Z1}=1/(2\pi \times R1 \times C3)$$

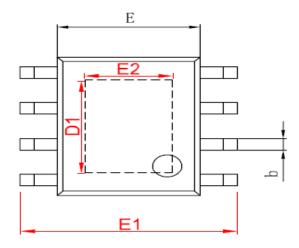
If a large value capacitor (C2) with relatively high equivalent-series-resistance (ESR) is used, the zero due to the capacitance and ESR of the output capacitor can be compensated by a third pole set by R1 and C4. The pole is:

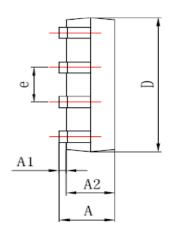
$$f_{P3}=1/(2\pi \times R1 \times C4)$$

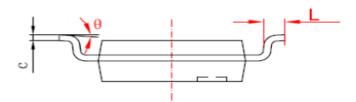
The system crossover frequency (the frequency where the loop gain drops to 1, or 0dB) is important. A good rule of thumb is to set the crossover frequency to approximately 1/10 of the switching frequency. In this case, the switching frequency is 400KHz, therefore use a crossover frequency, fc, of 40KHz. Lower crossover frequency results in slower loop response and poor load transient performance. Higher crossover frequency can result in loop instability.

Table 1. External Components for Typical Designs

VIN	Vout	R1	R2	R _C	Cc	L	Cout
(v)	(v)	(KΩ)	(KΩ)	(KΩ)	(nF)	(uH)	(uF)
12	3.3	25.8	10	10	1.5	22	22×2
12	5	44.2	10	10	1.5	33	22×2
24	3.3	25.8	10	10	1.5	22	22×2
24	5	44.2	10	10	1.5	33	22×2


To simplify design efforts using the SC88DY55A, the typical designs for common applications are listed in Table 1.


Packaging Information



SOP-8PP Package Outline Dimension

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.150	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
D1	3.202	3.402	0.126	0.134	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
е	1.270	D(BSC)	0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	