

ADC 型宽电压 1T 8051 内核 8 脚 Flash MCU

目录

日求	1
1 总体描述	4
2 主要特色	4
3 管脚定义	5
3.1 管脚配置	5
3.2 管脚定义	5
4 内部方框图	7
5 FLASH ROM 和 SRAM 结构	8
5.1 flash rom	8
5.2 Code Option 区域(用户烧写设置)	9
5.3 sram	
6 特殊功能寄存器(SFR)	11
6.1 SFR 映像	11
6.2 SFR 说明	11
7 电源、 复位 和 时钟	13
7.1 电源电路	13
7.2 上电复位过程	13
7.3 复位方式	
7.3.1 外部 RST 复位	
7.3.2 低电压复位 LVR	
7.3.4 软件复位	
7.3.5 看门狗复位 WDT	15
7.3.6 复位初始状态	16
7.4 时钟电路	16
7.5 省电模式 STOP	17
8 中央处理单元 CPU 及指令系统	17
8.1 CPU	17

8.2 寻址方式	17
8.2.1 立即寻址	17
8.2.2 直接寻址	17
8.2.3 间接寻址	
8.2.4 寄存器寻址	
8.2.5 相对寻址	
8.2.6 变址寻址	
8.2.7 位寻址	
8.3 指令系统	18
9 INTERRUPT 中断	21
9.1 中断源、向量	21
9.2 中断结构图	22
9.3 中断优先级	22
9.4 中断处理流程	23
9.5 中断相关 SFR 寄存器	23
10 定时器 TIMER0 、TIMER1	25
10.1 T0 和 T1 相关特殊功能寄存器	25
10.2 T0 工作模式	27
10.3 T1 工作模式	29
11 PWM	30
11.1 PWM 结构框图	31
11.2 PWM 相关 SFR 寄存器	32
11.3 PWM 波形及用法	34
12 GP I/O	37
12.1 GPIO 结构图	37
12.2 I/O 端口相关寄存器	39
12.3 I/O 端口复用	40
13 模数转换 ADC	41
13.1 ADC 相关寄存器	41

	13.2 ADC 转换步骤	43
14	IAP 操作	44
	14.1 IAP 操作相关寄存器	44
	14.2 IAP 操作流程	45
	14.3 IAP 读写范例程序	45
15	电气特性	47
	15.1 极限参数	47
	15.2 推荐工作条件	
	15.3 直流电气特性	47
	15.4 交流电气特性 (VDD = 2.5V ~ 5.5V, TA = 25℃, 除非另有说明)	48
	15.5 ADC 电气特性 (TA = 25℃, 除非另有说明)	48
	15.6 ADC 实测曲线图	49
16	订购信息	50
17	封装信息	51
18	规格更改记录	53

1 总体描述

SC91F711 是一颗加强型的宽工作电压超快速 1T 8051 工业级 Flash 微控制器,指令系统完全兼容传统 8051 产品系列。SC91F711 内部集成有 2KB Flash ROM(其中 128Byte 可作为 EEPROM)、128B SRAM、最多 6GP I/O、2 个 16 位定时器、4 路 10 位高精度 ADC、2 路 8 位 PWM、内部 1%高精度 16M/4M/1M 振荡器等资源。为提高可靠性及简化客户电路,SC91F711 内部也集成有 4 级可选电压 LVR、2.4V 基准 ADC 参考电压、WDT 等高可靠电源电路。SC91F711 可广泛应用于直发器、吸尘器等各种小家电,充电器、移动电源、航模、工业控制等应用领域。

2 主要特色

■ 工作电压: 2.4V~5.5V
 ■ 工作温度: -40~85度
 ■ 封装: DIP8L、SOP8L
 ■ 内核: 超快速的 1T 8051

■ 存储器: 2KB Flash ROM(MOVC 禁止寻址 0000~00FFH), 128B SRAM

■ 系统时钟: 内建 16M/4M/1M Hz 振荡器

■ 可通过用户的 Code Option 选择至 16M、4M、1MHz;

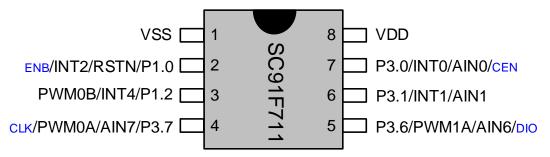
频率误差: 跨越 (3.0V~5.5V) 及 (-40 度, 85 度) 应用环境, 不超过 ±1%

■ 低电压复位(LVR):

● 复位电压有 4 级可选:分别是: 3.65V、 3.50V、2.60V、2.45V。

缺省值为用户烧写 Code Option 所选值

■ Flash 烧写: 4线串口烧写接口


■ 中断(INT):

- TIMER0, TIMER1, INT0~2, INT4,ADC, PWM 共 8 个中断源
- INT0~2 为 3 个独立的中断向量入口,下降沿触发
- INT4 为单独的中断向量入口,可设上升沿、下降沿、双沿中断
- 两级中断优先级可设
- 数字外围:
- 6个双向强输出 GP I/O, 4 种模式可设
- 16 位 WDT,可选时钟分频比
- 2个标准 80C51 16 位定时器 TIMER0 及 TIMER1
- 2路共用周期、单独可调占空比的8位PWM,1路可输出切换到其他口输出
- 模拟外围:
- 4路10位ADC
 - 1) 内建基准的 2.4V 参考电压
 - 2) ADC 的参考电压有 2 种选择, 分别是 VDD 以及 内部 2.4V
 - 3) 可设 ADC 转换完成中断
- 省电模式:
- STOP MODE
- 可由 INT0~2, INT4 或者外部 RSTN 唤醒 STOP MODE

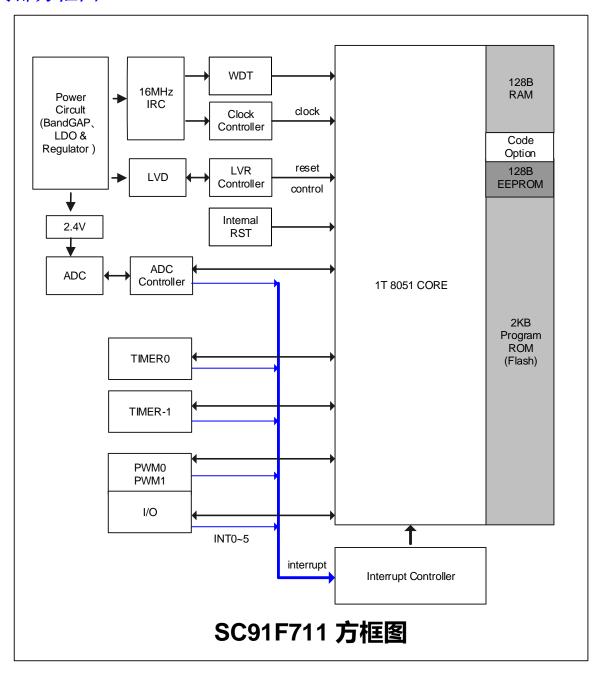
3 管脚定义

3.1 管脚配置

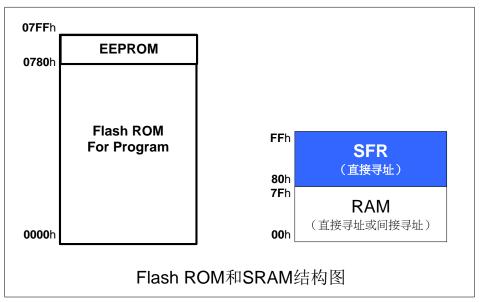
SC91F711管脚配置图

3.2 管脚定义

管脚编号 (14Pin)	管脚名称	管脚类型	功能说明
1	VSS	Power	接地
			1) RST:
2	RST/INT2/P1.0/ ENB	I/O	RESET 管脚(Default), 低电平使能。用户电路不能在上电时强制拉低(上电复位时,系统默认为 RST,复位后可通过设置 SFR(RSTCFG)取消 RESET 功能并将此 Pin 设为 IO)。 2) P1.0: GPIO P1.0 3) INT2 外部中断 2 4) Flash 烧写串口管脚 ENB
3	PWM0B/INT4/P 1.2	I/O	1) P1.2:
4	PWM0A/AIN7/ P3.7/CLK	I/O	1) P3.7:
5	PWM1A/AIN6/ P3.6/DIO	I/O	1) P3.6:
6	P3.1/INT1/T0/A IN1	I/O	1) P3.1: GPIO P3.1

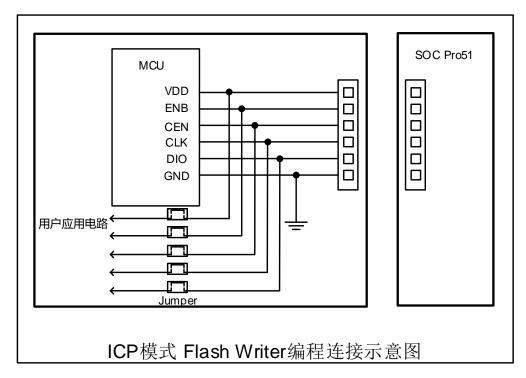


			2) INT1: 外部中断 1
			3) AIN1: ADC 输入通道 1
			4) T0:
7	P3.0/INT0/T1/A IN0 /CEN	I/O	1) P3.0: GPIO P3.0
			2) INT0: 外部中断 0
			3) AIN0: ADC 输入通道 0
			4) T1: Timer1 外部输入口
			5) CEN Flash 烧写管脚 CEN
8	VDD	Power	电源 2.4V – 5.5V


4 内部方框图

5 FLASH ROM 和 SRAM 结构

SC91F711 的 Flash ROM 和 SRAM 结构如下:



5.1 FLASH ROM

SC91F711 有 2KB 的 Flash ROM, ROM 地址为 0000H~07FFH, 其中地址为 0780H~07FFH 的 128Byte Flash 可以作为 EEPROM 使用(即支持用户在程式中擦写,详细操作请看 IAP 章节)。此 2KB Flash ROM 可反复擦写 10 万次,可通过 SinOneChip 提供的专用 ICP 烧写器(SOC Pro51/DPT51 Writer)来进行编程及擦除。地址为 0000H~0FFH 地址的 256B 区间 MOVC 指令不可寻址。

SC91F711 的 2KB Flash ROM 能提供查空 BLANK、编程 PROGRAM、校验 VERIFY 和擦除 ERASE 功能,但不提供读取 READ 的功能。

SC91F711 的 Flash ROM 通过 Pin2 (ENB)、Pin7 (CEN)、Pin4 (CLK)、Pin5 (DIO)、VDD、VSS来进行编程,具体连接关系如下:

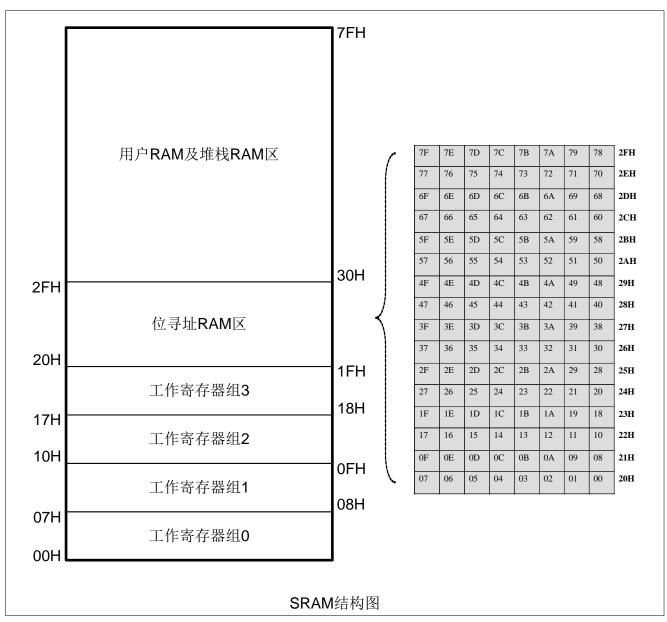
Page 8 of 53 深圳市赛元微电子有限公司

5.2 CODE OPTION 区域(用户烧写设置)

SC91F711 内部有单独的一块 Flash 区域用于保存客户的上电初始值设置,此区域称为 Code Option 区域。用户在烧写 IC 时将此部分代码写入 IC 内部,IC 在复位初始化时,就会将此设置调入 SFR 作为初始设置。

IFB	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0	
IFB1				DISLVR	LVRS[3:0]				
IFB2				ENWDT	Vrefs[1:0] IRCFS[1:0]				

IFB1 编号	符号	说明
4	DISLVR	LVR 开关 0: LVR 有效
		1: LVR 无效
3~0	LVRS [3:0]	LVR 电压选择控制 1011: 3.70V 复位 1010: 3.55V 复位 0101: 2.65V 复位 0100: 2.50V 复位 0100: 2.50V 复位 此电压点的值为常温值,实际值随温度会发生一些变化(约±0.1V@-40~85℃),具体表现为温度越高 LVR 电压点会下降,温度越低 LVR 电压点会抬高。


IFB2 编号	符号	说明
4	ENWDT	WDT 开关
		0: WDT 无效
		1: WDT 有效(但 IC 在执行 IAP 过程中 WDT 停止计数)
3,2	Vrefs[1:0]	ADC 参考电压选择
		00: 内部 VDD
		01: 内部精准的 2.4V
		10: 保留
		11: 保留
1,0	IRCFS [1:0]	IRC 频率选择控制
		00: IRC 频率为 16MHz
		01: IRC 频率为 4MHz
		10: IRC 频率为 1MHz
		11: 保留

5.3 SRAM

SC91F711 单片机内部集成了 128B 的 SRAM,供用户使用,地址范围为 00H~7FH,可直接寻址也可间接寻址。

SRAM 区可分为三部分: ①工作寄存器组 0~3,地址 00H~1FH,程序状态字寄存器 PSW 中的 RS0、RS1 组合决定了当前使用的工作寄存器,使用工作寄存器组 0~3 可加快运算的速度;②位寻址区 20H~2FH,此区域用户可以用作普通 RAM 也可用作按位寻址 RAM;按位寻址时,位的地址为 00H~7FH,(此地址按位编地址,不同于通用 SRAM 按字节编地址),程序中可由指令区分;③用户 RAM 和堆栈区,SC91F711 复位过后,8 位的堆栈指针指向堆栈区,用户一般会在初始化程序时设置初值,建议设置在 60H~7FH 的单元区间。

6 特殊功能寄存器(SFR)

6.1 SFR 映像

SC91F711 系列有一些特殊功能寄存器,我们称为 SFR。这些 SFR 寄存器的地址位于 80H~FFH,有些可以位寻址,有些不能位寻址。能够进行位寻址操作的寄存器的地址末位数都是 "0"或 "8",这些寄存器在需要改变单个位的数值时非常方便。所有的 SFR 特殊功能寄存器都必须使用直接寻址方式寻址。

SC91F711 的特殊功能寄存器名称及地址如下表:

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h	PWMCR	PWMPRD	PWMDTY1	PWMDTY0	PWMCFG	-	禁止操作	禁止操作
F0h	В	-	-	-	-	-	RSTCFG	禁止操作
E8h	-	-	IAPKEY		IAPADL	IAPDAT	IAPCTL	禁止操作
E0h	ACC	-	-	-	-	-	-	-
D8h	-	-	-	-	-	-	-	-
D0h	PSW	-	-	-	-	-	1	-
C8h	-	-	-	-	-	-	-	-
C0h	-	WDTCR	-	禁止操作	ADCCFG	ADCCR	ADCVH	ADCVL
B8h	IP	-	-	-	-	-	-	-
B0h	P3	P3CFG1	P3CFG0		EXIE	EXIP	P3ADC	-
A8h	IE	-	-	1	1	1	1	-
A0h	-		-	1	1	1	1	-
98h	-	-	-	1	1	1	1	-
90h	P1		P1CFG0	INT4IT	-	-	-	-
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	-
80h		SP	DPL	DPH	•	1	-	PCON
	可位寻址				不可位寻址			

说明:

1.SFR 寄存器中空的部分代表没有此寄存器 RAM,不建议用户使用。

2.SFR 中的 C3H、EFH、F7H、FEH、FFH 为系统配置使用的特殊功能寄存器,用户使用可能会导致系统异常,用户在初始化系统时,不能对此 5 个寄存器进行清零或其它操作。

6.2 SFR 说明

特殊功能寄存器 SFR 的具体解释说明如下:

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
SP	81h	堆栈指针				SP[7:0)]				00000111b
DPL	82h	DPTR 数据指针低位				DPL[7:	0]				0000000b
DPH	83h	DPTR 数据指针高位				DPH[7:	0]				0000000b
PCON	87h	电源管理控制寄存器	-	-	-	-	-	-	STOP	-	xxxxxx0xb
TCON		定时器控制寄存器	TF1	TR1	TF0	TR0	-	-	-	-	0000xxxxb
TMOD	89h	定时器工作模式寄存器	GATE1	C/T1	M11	M01	GATE0	C/T0	M10	M00	0000000b
TL0	8Ah	定时器0低8位				TL0[7:0	0]				0000000b
TL1	8Bh	定时器1低8位				TL1[7:0	0]				0000000b
TH0	8Ch	定时器 0 高 8 位				TH0[7:	0]				0000000b
TH1	8Dh	定时器1高8位				TH1[7:	0]				0000000b

ОГЬ	ウ肚鬼ೂあず松畑安方鬼							T4FD	TOED	2000000000h
		-	-	-	-	-				xxxxxx00b
		- -					P1.2			xxxxx1x1b
			· 	FIZI	VI[1.0]	-				xx00xx00b
			EADC	- ED\\/\\/	-	- ET1			[S[1.0]	xxxxxx00b 000x0x0xb
				EFVVIVI	-		-		- D2 0	11xxxx11b
				- D36I	- //[1·∩]	-	-	F3.1	F3.0	0000xxxxb
		FJ/IV	ı[ı.u]	F 301	vi[i .Oj	D21N	/[1·∩]	D3UN	<u>/</u> [1.0]	xxxx0000b
			_	_	- FINIT/	-				xxx0x0000b
				-						XXXUXUUUD
ווכם	器	-	_	-	IF LA4	1	IFEXZ	IFEXI		xxx0x000b
B6h		RP37U	RP36U	-	-	ı	ı	RP31U	RP30U	00xxxx00b
B8h		-	IPADC	IPPWM	-	IPT1	-		-	x00x0x0xb
C1h	WDT 控制寄存器	ENWDT	-	-	CLRWD T	-	-	WDTCKS[1:0]		nxx0xx00b
C4h	ADC 参考电压选择寄存器	-	-	-	-	-	-	- VREFS[1:0]		xxxxxxnnb
C5h	ADC 控制寄存器	ADCEN	ADCCK	S[1:0]	EOC	ADCS	CS ADCIS[2:0]			0000000b
C6h	ADC 结果寄存器, 储存转 化后的结果 ADCV[9:2]	ADC\/[0:2]							1000000b	
C7h	ADC 结果寄存器, 储存转	-	-	-	-	-	-	ADC'	V[1:0]	xxxxxx00b
D0h		CY	AC	F0	RS1	RS0	OV	-	Р	000000x0b
E0h	累加器		I		ACC[7:0	0]			I	0000000b
EAH	IAP 保护寄存器				IAPKEY[7	7:0]				0000000b
ECH					IAPADR[7:0]				11111111b
EDH					IAPDATI	7:01				11111111b
EEH	IAP 控制寄存器	-	-	_	-		IES[1:0]	CME)[1:0]	xxxx0000b
			1					ı		0000000b
	复位设置寄存器	-	-		DISLVR		LVR	S[3:0]		xx0nnnnnb
F8h	PWM 控制寄存器	ENPWM	PWMIF	-	-	DTY18	ENPW M1O	DTY08	ENPW M0O	00xx0000b
F9h	PWM 周期设置寄存器			F	WMPRD	[7:0]				11111111b
FAh	PWM1 高电平设置寄存器			Р	WMDTY1	[7:0]				0000000b
FBh	PWM0 高电平设置寄存器			Р	WMDTYC	[7:0]				0000000b
FCh	PWM 设置寄存器	-	P12PWM0	INV1	INV0	-		CKS[2:0]		x000x000b
	93H A8h B0h B1H B2H B4h B5h B6h B8h C1h C5h C6h C7h D0h E0h EAH ECH F0h F6h F8h F8h F9h FAh FBh	92H P1 口数据寄存器 92H P1 口模式设定寄存器 93H INT4 中断类型寄存器 A8h 中断控制寄存器 B0h P3 口数据寄存器 B1H P3 口模式设定寄存器 B1H P3 口模式设定寄存器 B2H P3 口模式设定寄存器 B4h 外部中断使能控制寄存器 B5h 外部中断优先权设定寄存器 B5h 外部中断优先权设定寄存器 B6h P3/ADC 切换控制寄存器 C1h WDT 控制寄存器 C1h WDT 控制寄存器 C4h ADC 参考电压选择寄存器 C5h ADC 控制寄存器 C6h ADC 结果寄存器,储存转化后的结果 ADCV[9:2] C7h ADC 结果寄存器,储存转化后的结果 ADCV[1:0] D0h 程序状态字寄存器 E0h 累加器 EAH IAP 保护寄存器 ECH IAP 地址低 8 位寄存器,高位恒定为 1 EDH IAP 数据寄存器 ECH IAP 控制寄存器 F6h 复位设置寄存器 F6h 复位设置寄存器 F6h 月000000000000000000000000000000000000	99h P1 口数据寄存器 - 92H P1 口模式设定寄存器 - 93H INT4 中断类型寄存器 - A8h 中断控制寄存器 EA B0h P3 口数据寄存器 P3.7 B1H P3 口模式设定寄存器 P37M B2H P3 口模式设定寄存器 P37M B2H P3 口模式设定寄存器 - B4h 外部中断使能控制寄存器 - B5h 外部中断优先权设定寄存 RB B6h P3/ADC 切换控制寄存器 RP37U B8h 中断优先权控制寄存器 - C1h WDT 控制寄存器 ENWDT C4h ADC 参考电压选择寄存器 - C5h ADC 控制寄存器 ADCEN C6h ADC 结果寄存器 ADCEN C6h ADC 结果寄存器 (存转 化后的结果 ADCV[9:2] C7h ADC 结果寄存器 CY E0h 累加器 EAH IAP 保护寄存器 CY E0h 累加器 EAH IAP 保护寄存器 ECH IAP 地址低 8 位寄存器,高位恒定为 1 EDH IAP 数据寄存器 - F0h B 寄存器 F6h 复位设置寄存器 F6h 复位设置寄存器 CY F8h PWM 控制寄存器 ENPWM F9h PWM 周期设置寄存器 ENPWM F9h PWM 周期设置寄存器 F8h PWM0 高电平设置寄存器 F8h PWM0 高电平设置寄存器 F8h PWM0 高电平设置寄存器 F8h PWM0 高电平设置寄存器	90h P1 口数据寄存器	90h P1 口数据寄存器	90h P1 口數据寄存器	90h P1 口数据寄存器	90h P1 口数据寄存器	90h	90h

8051 CPU 内核常用特殊功能寄存器介绍:

1. 程序计数器 PC

程序计数器 PC 不属于 SFR 寄存器。PC 有 16 位,是用来控制指令执行顺序的寄存器。单片机上电或者复位后,PC 值为 0000H,也即是说单片机程序从 0000H 地址开始执行程序。

2. 累加器 ACC(E0H)

累加器 ACC 是 8051 内核单片机的最常用的寄存器之一,指令系统中采用 A 作为助记符。常用来存放参加计算或者逻辑运算的操作数及结果。

3. B 寄存器(F0H)

B 寄存器在乘除法运算中必须与累加器 A 配合使用。乘法指令 MUL A, B 把累加器 A 和寄存器 B 中的 8 位 无符号数相乘, 所得的 16 位乘积的低位字节放在 A 中, 高位字节放在 B 中。除法指令 DIV A, B 是用 A 除以 B, 整数商放在 A 中, 余数放在 B 中。寄存器 B 还可以作为通用的暂存寄存器使用。

4. 堆栈指针 SP(81H)

堆栈指针是一个 8 位的专用寄存器,它指示出堆栈顶部在通用 RAM 中的位置。单片机复位后,SP 初始值为 07H,即堆栈会从 08H 开始向上增加。08H~1FH 为工作寄存器组 1~3,最好将 SP 值修改为 60H~7FH 的区间为 官。

5. PSW(D0h) 程序状态字寄存器

位编号	7	6	5	4	3	2	1	0
符号	CY	AC	F0	RS1	RS0	OV	-	P
上电初始值	0	0	0	0	0	0	X	0

位编号	位符号	说明					
7	CY	标志位					
		1: 加法运算最高位有进位,或者减法运算最高位有借位时					
		0: 加法运	室算最高位	z无进位,或者减法运算最高位无借位时			
6	AC	进位辅助	标志位(ī	可在 BCD 码加减法运算时方便调整)			
		1: 加法运	章即在 b	it3 位有进位,或减法运算在 bit3 位有借位时			
		0: 无借位	江、进位				
5	F0	用户标志	位				
4~3	RS1、RS0	工作寄存器组选择位:					
		RS1	RS0	当前使用的工作寄存器组 0~3			
		0					
		0	1	组1 (08H~0FH)			
		1	0	组 2 (10H~17H)			
		1	1	组 3 (18H~1FH)			
2	OV	溢出标志	位				
0	P	奇偶标志位。此标志位为累加器 ACC 中 1 的个数的奇偶值。					
		1: ACC 中 1 的个数为奇数					
		0: ACC	中1的个数	收为偶数 (包括 0 个)			
1	保留位	保留位					

6. 数据指针 DPTR (82H、83H)

数据指针 DPTR 是一个 16 位的专用寄存器,由低 8 位 DPL (82H) 和高 8 位 DPH (83H) 组成。DPTR 是以传统 8051 内核单片机中唯一可以直接进行 16 位操作的寄存器,也可以分别对 DPL 和 DPH 按 Byte 进行操作。

7 电源、复位和时钟

7.1 电源电路

SC91F711 内建有 LDO 和 Regulator,由此可保证 CPU 及 IRC 等部分电路工作的稳定。同时内部集成了一个经调校过的精准 2.4V 电压,可用作 ADC 内部参考电压。用户可在 ADC 章节查找具体设置内容。

7.2 上电复位过程

SC91F711 上电后, 在客户端软件执行前, 会经过以下的过程:

- ◆ 复位阶段
- ◆ 调入信息阶段
- ◆ 正常操作阶段

复位阶段

是指 SC91F711 会一直处于复位的情况, 直到供应给 SC91F711 的电压高过某一电压(预设为 LVR Option 值), 内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源一定要高过使用者选择的 LVR 电压后, 复位阶段才会完成。

调入信息阶段

在 SC91F711 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了用户编程 IC 时选定的 LVR 门坎后,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数量个 IRC clock 就会从 Flash ROM 中的 IFB(包含 Code Option)读出一个 byte 数据存放到内部系统寄存器中。直到 预热计数器到达 1023 后,该复位信号才会结束。

正常操作阶段

结束调入信息阶段后, SC91F711 开始从 Flash 中读取指令代码即进入正常操作阶段。

7.3 复位方式

SC91F711 有 5 种复位方式: ①外部 RST 复位②低电压复位 LVR③上电复位 POR④软件复位⑤看门狗 WDT 复位。

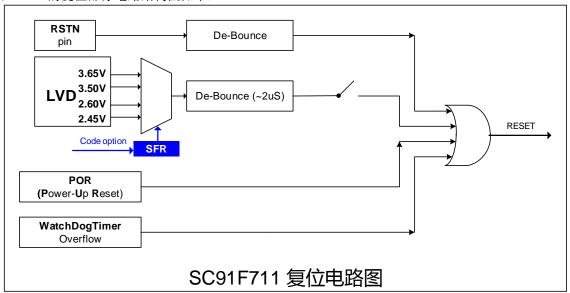
7.3.1 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC91F711 一定宽度的复位脉冲信号,来实现 SC91F711 的复位。

RST/P1.0 管脚在上电时作为复位管脚使用,用户可以在复位结束后通过软件来将其修改为 P1.0 使用。修改方法参考下面 LVR 部分关于 RSTCFG (F6H) 的使用说明。

7.3.2 低电压复位 LVR

SC91F711 内建了一个低电压复位电路。而复位的门限电压有 4 种选择, 缺省值 Default 是用户的 Code Option 值, 用户可以选择为 3.65V、3.50V、2.60V、2.45V。

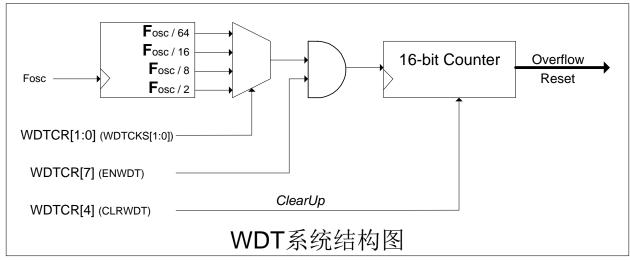

RSTCFG (F6h)复位设置寄存器(读/写)

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
位编号	7	6	5	4	3	2	1	0		
符号	-	-	DISRST	DISLVR		LVRS[3:0]				
读/写	-	-	读/写	读/写	读/写					
上电初始值	X	X	0	n	n	N	n	n		

位编号	位符号	说明					
7,6	保留位	保留位					
5	DISRST	IO/RST 复位切换控制					
		0: P1.0 当复位脚使用					
		1: P1.0 当正常的 I/O 管脚使用					
4	DISLVR	LVR 使能设置					
		0: LVR 正常使用					
		1: LVR 无效					
3~0	LVRS [3:0]	LVR 电压选择控制					
		1011: 3.65V 复位					
		1010: 3.50V 复位					
		0101: 2.60V 复位					
		0100: 2.45V 复位					

SC91F711 的复位部分电路结构图如下:

7.3.3 上电复位 POR


SC91F711 内部有上电复位电路, 当电源电压 VDD 上升到复位电压点时, 系统自动复位。

7.3.4 软件复位

SC91F711 提供一种特别的复位方式,以供用户在特殊场合使用。软件复位方法: 先将 RST/P1.0 管脚设置为 P1.0, 然后将 P1.0 设置为准双向/强推挽/开漏输出模式并输出低电平,最后将 RST/P1.0 管脚设置为 RST, 这时会使系统复位。

7.3.5 看门狗复位 WDT

SC91F711 有一个 16 位的 WDT, 其时钟源为内部的 16M/4M/1MHz 振荡器。其系统结构如下图所示:

WDTCR (C1h) 看门狗控制寄存器(读/写)

	112 1 017 (0 11) H 1 0 0 0 1 H 1 (N) 0 1								
位编号	7	6	5	4	3	2	1	0	
符号	ENWDT	-	-	CLRWDT	-	-	WDTCKS[1:0]		
读/写	读/写	-	-	读/写	-	-	读/写		
上电初始值	0	X	X	0	X	X	0	0	

7	ENWDT	WDT 开关						
		1: WDT 开始工作						
		0: WDT 美闭						
6,5,3,2	保留位	保留位						
4	CLRWDT	WDT 清"0"位	(写1有效)					
		1: WDT 计数	器从0开始计算	数				
		此位由系统硬件自动置 0						
1,0	WDTCKS [1:0]	看门狗时钟选	择(表中按照:	16Mhz 系统频率给	出 WDT 的参考时	间,如		
		使用其他时钟的	的用户,请同り	比例计算)				
		WDTCKS.1	WDTCKS.0	WDT 时钟频率	WDT 溢出时间			
					(16Mhz)			
		0	0	Fosc/64	262.144ms			
		0 1 Fosc/16 65.536ms						
		1	0	Fosc/8	32.768ms			
		1	1	Fosc/2	8.192ms			

7.3.6 复位初始状态

当 SC91F711 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态,PORT 口寄存器为 FFh。程序计数器 PC 初始值为 0000h,堆栈指针 SP 初始值为 07h。"热启动"的 Reset(如 WDT、LVR、软件复位等)不会影响到 SRAM,SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存为止。

SFR 寄存器的上电复位初始值如下表:

SFR 名称	初始值	SFR 名称	初始值
ACC	00000000ь	EXIE	00000000ь
В	00000000Ь	EXIP	00000000b
PSW	000000x0b	INT4IT	00000000ь
SP	00000111b	P3ADC	00000000ь
DPL	0000000b	WDTCR	nxx0xx00b
DPH	00000000Ь	ADCCFG	xxxxxx00b
PCON	xxxxxx0xb	ADCCR	00000000ь
IE	000x0x0xb	ADCVH	10000000ь
IP	x00x0x0xb	ADCVL	xxxxxx00b
P1	xxxxx1x1b	IAPKEY	00000000ь
Р3	11xxxx11b	IAPADL	1111111b
P1CFG0	xx00xx00b	IAPDAT	1111111b
P3CFG0	xxxx0000b	IAPCTL	xxxx0000b
P3CFG1	0000xxxxb	RSTCFG	xxx0nnnnb
TCON	0000xxxxb	PWMCR	00xx0000b
TMOD	0000000b	PWMPRD	11111111b
TH0	0000000b	PWMDTY1	00000000ь
TMCON	xxxxxx00b	PWMDTY0	00000000ь
		PWMCFG	x000x000b

7.4 时钟电路

SC91F711 内建了一个振荡频率可调的高精度 IRC, 出厂时,被精确地调校至 16MHz@5V/25℃。 调校过程是过滤掉制程上的偏差对精度所造成的影响,并把 16MHz 时所对应的参数写到内部 FLASH MEMORY 中。

此 IRC 受工作的环境温度和工作电压影响会有一定的漂移。对于压漂(3.0V~5.5V)以及(-40℃~85℃)的温漂控制在±1%以内。

用户可以通过编程器的 Code Option 将系统时钟设置为 16MHz、4MHz 和 1MHz。

7.5 省电模式 STOP

SC91F711 提供了一个特殊功能寄存器 PCON。 只要对该寄存器 PCON.1 写入 1, 内部的晶振就会停止, 进到 STOP 模式,达到省电功能。在 STOP 模式下, 用户可以通过外部中断 INT0~INT2、INT4 把 SC91F711 唤醒,也可以通过外部复位将 STOP 唤醒。

PCON (87h) 电源控制寄存器 (只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	STOP	-
读/写	-	-	-	-	-	-	只写	-
上电初始值	X	X	X	X	X	X	0	X
位编号	位名	夺号			说	明		
1	ST	OP	STOP 模式控制 0: 正常操作模式 1: 节能模式, 内部晶振停止工作					

8 中央处理单元 CPU 及指令系统

8.1 CPU

SC91F711 所用的 CPU 是一个 超快速的 1T 标准 8051 内核, 其指令完全兼容传统 8051 内核单片机。

8.2 寻址方式

SC91F711 的 1T 8051 CPU 指令的寻址方式有: ①立即寻址②直接寻址③间接寻址④寄存器寻址⑤相对寻址⑥变址寻址⑦位寻址

8.2.1 立即寻址

立即寻址也称为立即数, 它是在指令操作数中直接给出参加运算的操作数, 指令举例如下:

MOV A, #50H (这条指令是将立即数 50H 送到累加器 A 中)

8.2.2 直接寻址

在直接寻址方式中,指令操作数域给出的是参加运算操作数的地址。直接寻址方式只能用来表示特殊功能寄存器、内部数据寄存器和位地址空间。其中特殊功能寄存器和位地址空间只能用直接寻址方式访问。举例如下:

ANL 50H, #91H (表示 50H 单元中的数与立即数 91H 相"与",结果存放在 50H 单元中。其中 50H 为直接地址,表示内部数据寄存器 RAM 中的一个单元。)

8.2.3 间接寻址

间接寻址采用 R0 或 R1 前添加"@"符号来表示。假设 R1 中的数据是 40H,内部数据存储器 40H 单元的数据为 55H,则指令为

MOV A, @R1 (把数据 55H 传送至累加器 A)。

8.2.4 寄存器寻址

寄存器寻址时对选定的工作寄存器 R7~R0、累加器 A、通用寄存器 B、地址寄存器和进位 C 中的数进行操作。其中寄存器 R7~R0 由指令码的低 3 位表示,ACC、B、DPTR 及进位位 C 隐含在指令码中。因此,寄存器寻址也包含一种隐含寻址方式。寄存器工作区的选择由程序状态字寄存器 PSW 中的 RS1、RS0 来决定。指令操作数指定的寄存器均指当前工作区的寄存器。

INC R0 是指 (R0) +1→R0

8.2.5 相对寻址

相对寻址是将程序计数器 PC 中的当前值与指令第二字节给出的数相加,其结果作为转移指令的转移地址。转移地址也成为转移目的地址,PC 中的当前值成为基地址,指令第二字节给出的数成为偏移量。由于目的地址是相对于 PC 中的基地址而言,所以这种寻址方式成为相对寻址。偏移量为带符号的数,所能表示的范围为+127~-128.这种寻址方式主要用于转移指令。

JC \$+50H

表示若进位位 C 为 0,则程序计数器 PC 中的内容不改变,即不转移。若进位位 C 为 1,则以 PC 中的当前

值及基地址,加上偏移量 50H 后所得到的结果作为该转移指令的目的地址。

8.2.6 变址寻址

在变址寻址方式中,指令操作数制定一个存放变址基址的变址寄存器。变址寻址时,偏移量与变址基值相加,其结果作为操作数的地址。变址寄存器有程序计数器 PC 和地址寄存器 DPTR。

MOVC A, @A+DPTR

表示累加器 A 为偏移量寄存器,其内容与地址寄存器 DPTR 中的内容相加,其结果作为操作数的地址,取出该单元中的数送入累加器 A 中。

8.2.7 位寻址

位寻址是指对一些可进行位操作的内部数据存储器 RAM 和特殊功能寄存器进行位操作时的寻址方式。在进行位操作时,借助于进位位 C 作为位操作累加器,指令操作数直接给出该位的地址,然后根据操作码的性质对该位进行位操作。位地址与字节直接寻址中的字节地址编码方式完全一样,主要由操作指令的性质加以区分,使用时应特别注意。

MOV C, 20H (将地址为 20H 的位操作寄存器值送入进位位 C 中。)

8.3 指令系统

1T 8051 指令系统

助记符							
算术操作指令							
ADD A, Rn	寄存器内容加到累加器 A	1	1				
ADD A, direct	直接地址单元中的数据加到累加器A	2	2				
ADD A, @Ri	间接 RAM 中的数据加到累加器 A	1	2				
ADD A, #data	立即数加到累加器 A	2	2				
ADDC A, Rn	寄存器带进位加到累加器	1	1				
ADDC A, direct	直接地址单元的内容带进位加到累加器	2	2				
ADDC A, @Ri	间接 RAM 内容带进位加到累加器	1	2				
ADDC A, #data	立即数带进位加到累加器	2	2				
SUBB A, Rn	累加器带借位减寄存器内容	1	1				
SUBB A, direct	累加器带借位减直接地址单元的内容	2	2				
SUBB A, @Ri	累加器带借位减间接 RAM 中的内容	1	2				
SUBB A, #data	累加器带借位减立即数	2	2				
INC A	累加器加1	1	1				
INC Rn	寄存器加1	1	2				
INC direct	直接地址单元加1	2	3				
INC @Ri	间接 RAM 单元加 1	1	3				
DEC A	累加器减1	1	1				
DEC Rn	寄存器减 1	1	2				
DEC direct	直接地址单元减1	1	3				
DEC @Ri	间接 RAM 单元减 1	2	3				
INC DPTR	地址寄存器 DPTR 加 1	1	1				
MUL AB	A 乘以 B	1	2				
DIV AB	A除以B	1	6				
DA A	累加器十进制调整	1	3				
	逻辑操作指令						
ANL A, Rn	累加器与寄存器相"与"	1	1				
ANL A, direct	累加器与直接地址单元相"与"	2	2				
ANL A, @Ri	累加器与间接 RAM 单元相 "与"	1	2				
ANL A, #data	累加器与立即数相"与"	2	2				
ANL direct, A	直接地址单元与累加器相"与"	2	3				
ANL direct, #data	直接地址单元与立即数相"与"	3	3				
ORL A, Rn	累加器与寄存器相"或"	1	1				
ORL A, direct	累加器与直接地址单元相"或"	2	2				
ORL A, @Ri	累加器与间接 RAM 单元相"或"	1	2				
ORL A, #data	累加器与立即数相"或"	2	2				

ORL direct, A	直接抽扯单元上男加思相"武"	2	3
ORL direct, #data	直接地址单元与累加器相"或" 直接地址单元与立即数相"或"	3	3
XRL A, Rn		1	1
XRL A, Kn XRL A, direct	累加器与寄存器相"异或"		
XRL A, direct XRL A, @Ri	累加器与直接地址单元相"异或"	2	2
	累加器与间接地址单元相"异或"	1	2
XRL A, #data	累加器与立即数相"异或"	2	2
XRL direct, A	直接地址单元与累加器相"异或"	2	3
XRL direct, #data	直接地址单元与立即数相"异或"	3	3
CLR A	累加器清"0"	1	1
CPL A	累加器求反	1	1
RL A	累加器循环左移	1	1
RLC A	累加器带进位位循环左移	1	1
RR A	累加器循环右移	1	1
RRC A	累加器带进位位循环右移	1	1
SWAP A	累加器内高低半字节交换	1	1
	布尔变量操作指令		
CLR C	清 0 进位位	1	1
CLR bit	清0直接地址位	2	3
SETB C	进位位置 1	1	1
SETB bit	直接地址位置 1	2	3
CPL C	进位位求反	1	1
CPL bit	直接地址位求反	2	3
ANL C, bit	进位位和直接地址为相"与"	2	2
ANL C,/bit	进位位和直接地址位的反码相"与"	2	2
ORL C,bit	进位位和直接地址位相"或"	2	2
ORL C,/bit	进位位和直接地址位反码相"或"	2	2
MOV C, bit	直接地址位送入进位位	2	2
MOV bit, C	进位位送入直接地址位	2	3
JC rel	进位位为1则转移	2	3
JNC rel	进位位为0则转移	2	3
JB bit, rel	直接地址位为1则转移	3	5
JNB bit, rel	直接地址位为0则转移	3	5
JBC bit, rel	直接地址位为1则转移,该位清0	3	5
	数据传送类指令		
MOV A, Rn	寄存器内容送入累加器	1	1
MOV A, direct	直接地址单元中的数据送入累加器	2	2
MOV A, @Ri	间接 RAM 中的数据送入累加器	1	2
MOV A, #data	立即数送入累加器	2	2
MOV Rn, A	累加器内容送入寄存器	1	1
MOV Rn, direct	直接地址单元中的数据送入寄存器	2	3
MOV Rn, #data	立即数送入寄存器	2	2
MOV direct, A	累加器内容送入直接地址单元	2	2
MOV direct, Rn	寄存器内容送入直接地址单元	2	2
MOV direct1,direct2	直接地址单元中的数据送入另一个直接地址单元	3	3
MOV direct, @Ri	间接 RAM 中的数据送入直接地址单元	2	3
MOV direct, #data	立即数送入直接地址单元	3	3
MOV @Ri, A	累加器内容送间接 RAM 单元	1	2
MOV @Ri, direct	直接地址单元数据送入间接 RAM 单元	2	3
MOV @Ri, #data	立即数送入间接 RAM 单元	2	2
MOV @RI, #data MOV DPTR,#data16		3	3
·	16位立即数送入 DPTR		
MOVC A,@A+DPTR	以 DPTR 为基地址变址寻址单元中的数据送入累加器	1	5
MOVC A,@A+PC	以PC为基地址变址寻址单元中的数据送入累加器	1	4
MOVX A, @Ri	逻辑上在外部的片内扩展 RAM (8 位地址) ,送入累加器	1	3
MOVX @Ri, A	累加器送入逻辑上在外部的片内扩展 RAM(8 位地址)	1	4

MOVX A,@DPTR	逻辑上在外部的片内扩展 RAM(16位地址),送入累加器	1	2
MOVX @DPTR, A	累加器送入逻辑上在外部的片内扩展 RAM(16 位地址)	1	3
PUSH direct	直接地址单元中的数据压入堆栈	2	3
POP direct	栈底数据弹出送入直接地址单元	2	2
XCH A, Rn	寄存器与累加器交换	1	2
XCH A, direct	直接地址单元与累加器交换	2	3
XCH A, @Ri	间接 RAM 与累加器交换	1	3
XCHD A, @Ri	间接 RAM 的低半字节与累加器交换	1	3
	控制转移类指令		
ACALL address11	绝对(短)调用子程序	2	4
LCALL address16	长调用子程序	3	4
RET	子程序返回	1	4
RETI	中断返回	1	4
AJMP address11	绝对(短)转移	2	3
LJMP address16	长转移	3	4
SJMP rel	相对转移	2	3
JMP @A+DPTR	相对于 DPTR 的间接转移	1	5
JZ rel	累加器为0转移	2	4
JNZ rel	累加器非0转移	2	4
CJNE A, direct, rel	累加器与直接地址单元比较,不相等则转移	3	5
CJNE A, #data, rel	累加器与立即数比较,不相等则转移	3	4
CJNE Rn, #data, rel	寄存器与立即数比较,不相等则转移	3	4
CJNE @Ri, #data, rel	间接 RAM 单元与立即数比较,不相等则转移	3	5
DJNZ Rn, rel	寄存器减1,非0转移	2	4
DJNZ direct, rel	直接地址单元减1,非0转移	3	5
NOP	空操作	1	1
SC91F711 的 MOVO	C 指令禁止寻址 0000~00FFH 地址,具体使用说明请参考《赛元 MCU	应用注意事项	》

9 INTERRUPT 中断

SC91F711 单片机提供了 8 个中断源: Timer0、Timer1、PWM、ADC、INT0、INT1、INT2、INT4。这 8 个中断源分为 2 个中断优先级,并可以单独分别设置为高优先级或者低优先级。每个中断分别有独立的优先级设置位、中断标志、中断向量和使能位,总的使能位 EA 可以实现所有中断的打开或者关闭。

9.1 中断源、向量

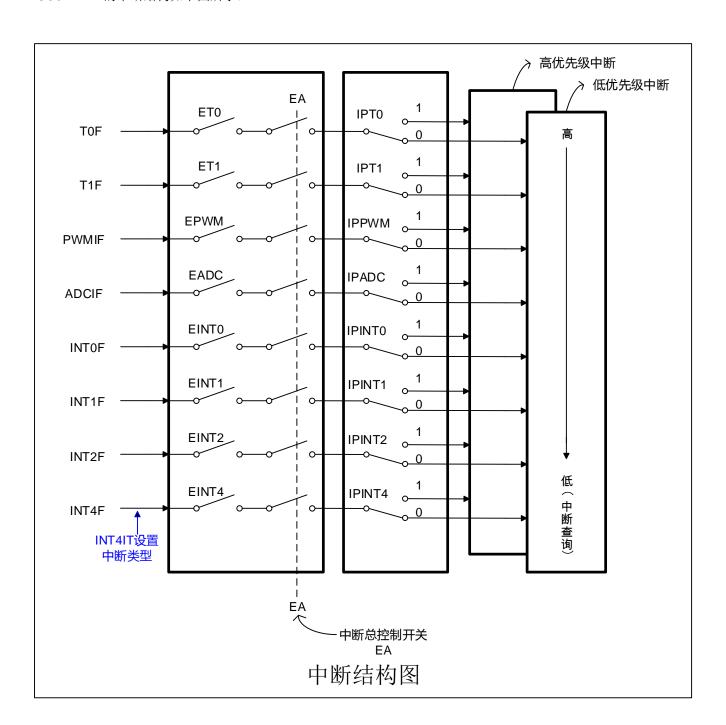
SC91F711的中断源、中断向量、及相关控制位列表如下:

中断源	中断发生 时间	中断标志	中断使能 控制	中断优先权 控制	中断向量	查询优先级	中断号 (C51)	标志清除 方式	能否唤醒 STOP
Timer0	Timer0 溢出	TCON[5] (TF0)	IE[1] (ET0)	IP[1]	000BH	1(高)	1	H/W Auto	不能
Timer1	Timer1 溢出	TCON[7] (TF1)	IE[3] (ET1)	IP[3]	001BH	2	3	H/W Auto	不能
PWM	PWM 溢出	PWMCR[7] (PWMIF)	IE[5] (EPWM)	IP[5]	002BH	3	5	必须用户 清除	不能
ADC	ADC 转换 完成	ADCCR[4] (EOC/ADCIF	IE[6] (EADC)	IP[6]	0033Н	4	6	必须用户 清除	不能
INT0	下降沿	隐藏式	EXIE[0]	EXIP[0]	003BH	5	7	H/W Auto	能
INT1	下降沿	隐藏式	EXIE[1]	EXIP[1]	0043H	6	8	H/W Auto	能
INT2	下降沿	隐藏式	EXIE[2]	EXIP[2]	004BH	7	9	H/W Auto	能
INT4	下降沿 上升沿 双沿	隐藏式	EXIE[4]	EXIP[4]	005BH	9	11	H/W Auto	能

在 EA=1 及各中断使能控制为 1 的情况下,各中断发生情况如下:

定时器中断: Timer0 和 Timer1 溢出时会产生中断并将中断标志 TF0 和 TF1 置为"1",当单片机执行该定时器中断时,中断标志 TF0 和 TF1 会被硬件自动清"0"。

PWM 中断: 当 PWM 计数器溢出时(也就是说: 计数器数到超过 PWMPRD 时), PWMIF 位(PWM Interrupt Flag)会被硬件自动置"1", PWM 中断产生。在 PWM 中断发生后, 硬件并不会自动清除 PWMIF 位, 此 bit 必须由使用者的软件负责清除。


ADC 中断: ADC 中断的发生时间为 ADC 转换完成时,其中断标志就是 ADC 转换结束标志 EOC/ADCIF (ADCCR.4)。当使用者设定 ADCS 开始转换后, EOC 会被硬件自动清除为 "0";当转换完成后, EOC 会被硬件自动置为 "1"。使用者在 ADC 中断发生之后,进入中断服务程序时,必须用软件去清除它。

外部中断 INTx(x=0~2,4): 外部中断 INT0~2,INT4 有单独的中断向量, 当外部中断口有中断条件发生时, 外部中断就发生了。这 4 个外部中断标志是系统隐藏式的,不需要用户做处理,硬件会自动清除。其中 INT0~2 的外部中断仅下降沿触发,无需用户设置; INT4 为初始值为单下降沿的外部中断,如果用户需要双沿或者上升沿中断,可通过设置 SFR (INT4IT)来实现。用户可通过 EXIP 寄存器来设置每个中断的优先级级别。外部中断INT0~5 还可以唤醒单片机的 STOP。

9.2 中断结构图

SC91F711 的中断结构如下图所示:

9.3 中断优先级

SC91F711 单片机的中断具有两个中断优先级,这些中断源的请求可编程为高优先级中断或者低优先级中断,即可实现两级中断服务程序的嵌套。一个正在执行的低优先级中断能被高优先级中断请求所中断,但不能被另一个同一优先级的中断请求所中断,一直执行到结束,遇到返回指令 RETI,返回主程序后再执行一条指令才能响应新的中断请求。

也就是说

- ① 低优先级中断可被高优先级中断请求所中断,反之不能;
- (2) 任何一种中断,在响应过程中,不能被同一优先级的中断请求所中断。

中断查询顺序: SC91F711 单片机的同一优先级中断,如果同时来几个中断,则中断响应的优先顺序同 C51中的中断查询号相同,即查询号小的会优先响应,查询号大的会慢响应。

9.4 中断处理流程

当一个中断产生并且被 CPU 响应,则主程序运行被中断,将执行下述操作

- 1, 当前正在执行的指令执行完;
- 2, PC 值被压入堆栈, 保护现场;
- 3, 中断向量地址载入程序计数器 PC;
- 4, 执行相应的中断服务程序;
- 5,中断服务程序结束并 RETI;
- 6,将 PC 值退栈,并返回执行中断前的程序。

在此过程中,系统不会立即执行其它同一优先级的中断,但会保留所发生的中断请求,在当前中断处理结束后,转去执行新的中断请求。

9.5 中断相关 SFR 寄存器

IE (A8h) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	EPWM	-	ET1	-	ET0	-
读/写	读/写	读/写	读/写	•	读/写		读/写	-
上电初始值	0	0	0	X	0	X	0	X

位编号	位符号	说明						
7	EA	中断使能的总控制						
		0: 关闭所有的中断						
		1: 打开所有的中断						
6	EADC	ADC 中断使能控制						
		0: 关闭 ADC 中断						
		1: 允许 ADC 转换完成时产生中断						
5	EPWM	PWM 中断使能控制						
		0: 关闭 PWM 中断						
		1: 允许 PWM 计数溢出(数到 PWMPRD)时产生中断						
3	ET1	Timer1 中断使能控制						
		0: 关闭 TIMER1 中断						
		1: 允许 TIMER1 中断						
1	ET0	Timer0 中断使能控制						
		0: 关闭 TIMER0 中断						
		1: 允许 TIMERO 中断						
4,2,0	保留位	保留位						

IP (B8h) 中断优先权寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号	-	IPADC	IPPWM	-	IPT1	-	IPT0	-	
读/写	-	读/写	读/写	-	- 读/写		读/写	-	
上电初始值	X	0	0	X	0	X	0	X	
位编号	位名	守号			说	明	-		
6	IPA	DC	ADC 中断t	尤先权选择					
			0: ADC 中断优先权为低						
			1: ADC 中断优先权为高						

5	IPPWM	PWM 中断优先权选择						
		0: PWM 中断优先权为低						
		1: PWM 中断优先权为高						
3	IPT1	Timer1 中断优先权选择						
		0: Timer1 中断优先权为低						
		1: Timer1 中断优先权为高						
1	IPT0	Timer0 中断优先权选择						
		0: Timer0 中断优先权为低						
		1: Timer0 中断优先权为高						
7,4,2,0	保留位	保留位						

EXIE (B4h) 外部中断使能寄存器(读/写)

	, . , . , , , ,	7 · 7 · 1 · 7 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1										
位编号	7	6	5	4	3	2	1	0				
符号	-	-	-	EINT4	-	EINT2	EINT1	EINT0				
读/写	-	-	-	读/写	-	读/写	读/写	读/写				
上电初始值	X	X	X	0	X	0	0	0				

位编号	位符号	说明
4,2~0	EINTx (x=0~2,4)	外部中断使能控制 0: 关闭外部中断 INTx(x=0~2,4) 的中断 1: 允许外部中断 INTx(x=0~2,4) 发生中断
7,6,5,3	保留位	保留位

EXIP (B5h) 外部中断优先权寄存器(读/写)

<u> </u>	, . , . , , , , ,	/ · · · · · · · · · · · · · · · · · · ·									
位编号	7	6	5	4	3	2	1	0			
符号	-	-	-	IPEX4	-	IPEX2	IPEX1	IPEX0			
读/写	-	-	-	读/写	-	读/写	读/写	读/写			
上电初始值	X	X	X	0	X	0	0	0			

位编号	位符号	说明
5~0	IPEXn (n=0~2,4)	外部中断优先权选择 0:外部中断 INTn(n=0~2,4) 的中断优先级是"低" 1: 外部中断 INTn(n=0~2,4) 的中断优先级是"高"
7,6	保留位	保留位

INT4IT (93h) INT4 外部中断类型寄存器(读/写)

	111 111 (111) 111 17 17 17 17 17 17 17 17 17 17 17 17											
位编号	7	6	5	4	3	2	1	0				
符号	-	-	-	-	-	1	INT4ES[1:0]					
读/写	-	-	-	-	-	1	读/写	读/写				
上电初始值	X	X	X	X	X	X	0	0				

位编号	位符号	说明
1,0	INT4ES[1:0]	INT4 Edge Selction,外部中断类型选择 00: 下降沿中断 01: 无中断 10: 双沿中断 11: 上升沿中断
7~2	保留位	

10 定时器 TIMER0、TIMER1

SC91F711 单片机内部有两个 16 位定时器/计数器分别称为 T0 和 T1,它们具有计数方式和定时方式两种工作模式。特殊功能寄存器 TMOD 中有一个控制位 C/Tx 来选择 T0 和 T1 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。GATEx 和 TRx 是 T0 和 T1 在定时器/计数器模式计数的开关控制,只有在 GATEx=0 且 TRx=1 的时候,T0 和 T1 才会被打开计数。

计数器模式下,P3.1/T0 和P3.0/T1 管脚上的每一个脉冲,T0 和T1 的计数值分别增加1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 TO 和 T1 的计数来源是 Fosc/12 或 Fosc/4。

定时器/计数器 T0 有 4 种工作模式,定时器/计数器 T1 有 3 种工作模式(模式三不存在):

①模式 0: 13 位定时器/计数器模式

②模式 1: 16 位定时器/计数器模式

③模式 2: 8位自动重载模式

④模式 3: 两个 8位定时器/计数器模式。

在上述模式中, T0 和 T1 的模式 0、1、2 都相同,模式 3 不同。

10.1 T0 和 T1 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	-	-	-	-	0000xxxxb
TMOD	89H	定时器工作模式寄存器	GATE1	C/T1	M11	M01	GATE0	C/T0	M10	M00	0000000b
TL0	8AH	定时器0低8位							00000000b		
TL1	8BH	定时器1低8位									00000000ь
TH0	8CH	定时器0高8位									00000000ь
TH1	8DH	定时器1高8位							00000000ь		
TMCON	8EH	定时器频率控制寄存器	-	-	-	-	-	-	T1FD	T0FD	xxxxxx00b

各寄存器的解释说明如下:

TCON (88h) 定时器控制寄存器

位	立编号	7	6	5	4	3	2	1	0
	符号	TF1	TR1	TF0	TR0	-	-	-	-
	读/写	读/写	读/写	读/写	读/写	-	-	-	-
上旬	包初始值	0	0	0	0	X	X	Х	X

位编号	位符号	说明
7	TF1	T1 溢出中断请求标志。T1 产生溢出,发生中断时,硬件将 TF1 置为
		"1",申请中断,CPU响应时,硬件清"0"。
6	TR1	定时器 T1 的运行控制位。此位由软件置 1 和清 0。当 GATE1
		TMOD[7]=0,TR1=1 时,允许 T1 开始计数。TR1=0 时禁止 T1 计数。
5	TF0	T0 溢出中断请求标志。T0 产生溢出,发生中断时,硬件将 TF0 置为
		"1",申请中断,CPU响应时,硬件清"0"。
4	TR0	定时器 T0 的运行控制位。此位由软件置位和清 0。当 GATE0
		TMOD[3]=0,TR0=1 时,允许 T0 开始计数。TR0=0 时禁止 T0 计数。
3~0	保留位	保留位

TMOD (89h) 定时器工作模式寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	GATE1	C/T1	M11	M01	GATE0	C/T0	M10	M00
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0
	T1				T0			

位编号	位符号	说明
7	GATE1	TMOD[7]控制定时器 1, 置 0 且 TR1 置 1 时才打开 T1
6	C/T1	TMOD[6]控制定时器 1
		0: 定时器, T1 计数来源于 Fosc 分频
		1: 计数器, T1 计数来源于外部管脚 T1/P3.0
5,4	M11,M01	定时器/计数器 1 模式选择
		0 0: 13 位定时器/计数器, TL1 高 3 位无效
		0 1: 16 位定时器/计数器, TL1 和 TH1 全
		1 0:8位自动重载定时器,溢出时将 TH1 存放的值自动重装入 TL1
		1 1: 定时器/计数器1无效(停止计数)
3	GATE0	TMOD[3]控制定时器 0, 置 0 且 TR0 置 1 时才打开 T0
2	C/T0	TMOD[2]控制定时器 0
		0: 定时器, T0 计数来源于 Fosc 分频
		1: 计数器,T0计数来源于外部管脚T0/P3.1
1,0	M10,M00	定时器/计数器 0 模式选择
		0 0: 13 位定时器/计数器, TL0 高 3 位无效
		0 1: 16 位定时器/计数器, TL0 和 TH0 全
		1 0:8位自动重载定时器,溢出时将 TH0 存放的值自动重装入 TL0
		1 1: 定时器 0 此时作为双 8 位定时器/计数器。TL0 作为一个 8 位定
		时器/计数器,通过标准定时器 0 的控制位控制; TH0 仅作为一个 8 位定
		时器,由定时器1的控制位控制。

TMOD 寄存器中 TMOD[0]~TMOD[3]是设置 T0 的工作模式; TMOD[4]~TMOD[7]是设置 T1 的工作模式。 定时器和计数器 Tx 功能由特殊功能寄存器 TMOD 的控制位 C/Tx 来选择, M0x 和 M1x 都是用来选择 Tx 的工作模式。GATEx 和 TRx 作为 T0 和 T1 的开关控制,只有在 GATEx=0 且 TRx=1 是 T0 和 T1 才打开。

TMCON (8Eh) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	T1FD	T0FD
读/写	-	-	ı	-	-	ı	读/写	读/写
上电初始值	X	X	X	X	X	X	0	0

位编号	位符号	说明
1	T1FD	T1 输入频率选择控制
		0: T1 频率源自于 Fosc/12
		1: T1 频率源自于 Fosc/4
0	T0FD	T0 输入频率选择控制
		0: T0 频率源自于 Fosc/12
		1: T0 频率源自于 Fosc/4
7~2	保留位	保留位

IE (A8h) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	EPWM	-	ET1	-	ET0	-
读/写	读/写	读/写	读/写	-	读/写	-	读/写	-
上电初始值	0	0	0	X	0	X	0	X

位编号	位符号	说明
3	ET1	Timer1 中断使能控制

		0: 关闭 TIMER1 中断 1: 允许 TIMER1 中断
1	ET0	Timer0 中断使能控制
		0: 关闭 TIMER0 中断
		1: 允许 TIMER0 中断

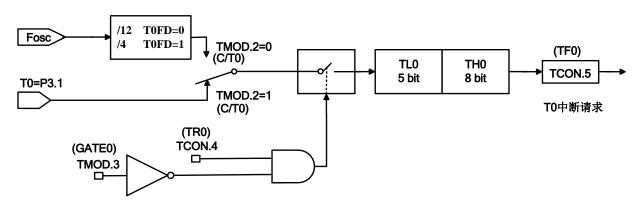
IP (B8h) 中断优先级寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPPWM	-	IPT1	ı	IPT0	-
读/写	-	读/写	读/写	-	读/写	ı	读/写	-
上电初始值	X	0	0	X	0	X	0	X

位编号	位符号	说明			
3	IPT1	Timer1 中断优先权			
		0:设定 Timer 1 的中断优先权是"低"			
		1:设定 Timer 1 的中断优先权是 "高"			
1	IPT0	Timer0 中断优先权			
		0: 设定 Timer 0 的中断优先权是 "低"			
		1:设定 Timer 0 的中断优先权是"高"			

10.2 T0 工作模式

通过对寄存器 TMOD 中的 M10、M00 (TMOD[1]、TMOD[0])的设置,定时器/计数器 0 可实现 4 种不同的工作模式。

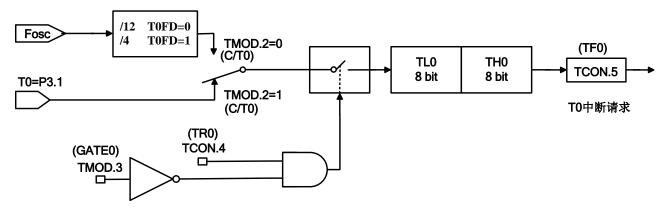

工作模式 0:13 位计数器/定时器。

TH0 寄存器存放 13 位计数器/定时器的高 8 位(TH0.7~TH0.0), TL0 存放低 5 位(TL0.4~TL0.0)。TL0 的高三位(TL0.7~TL0.5)是不确定值,读取时应被忽略掉。当 13 位定时器/计数器递增溢出时,系统会将定时器溢出标志 TF0 置 1。如果定时器 0 中断被允许,将会产生一个中断。

C/T0 位选择计数器/定时器的时钟输入源。如果 C/T0=1,定时器 0 输入脚 T0 (P3.1)的电平从高到低的变化,会使定时器 0 数据寄存器加 1。如果 C/T0=0,选择系统时钟的分频为定时器 0 的时钟源。

当 GATE0=0, TR0 置 1 打开定时器 T0。TR0 置 1 并不强行复位定时器,意味着如果 TR0 置 1,定时器寄存器将从上次 TR0 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

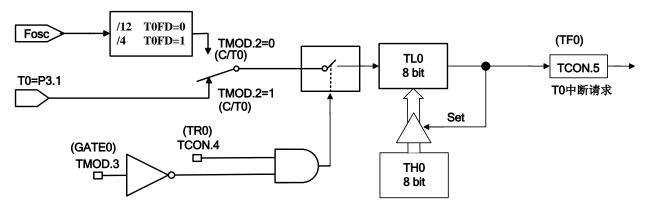
当作为定时器应用时,可配置 TOFD 来选择时钟源的分频比例。



定时器/计数器工作模式0:13位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL0 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。


定时器/计数器工作模式1:16位定时器/计数器

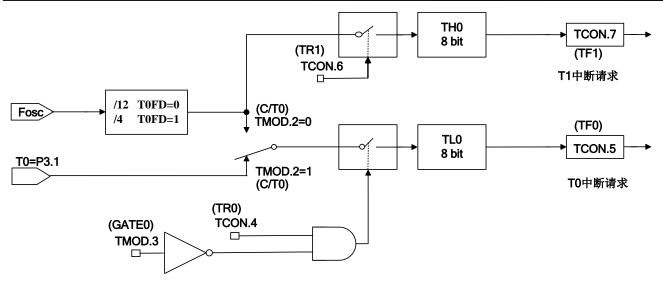
工作模式 2:8 位自动重载计数器/定时器

在工作模式 2 中,定时器 0 是 8 位自动重载计数器/定时器。TL0 存放计数值,TH0 存放重载值。当在 TL0 中的计数器溢出至 0x00 时,定时器溢出标志 TF0 被置 1,寄存器 TH0 的值被重载入寄存器 TL0 中。如果定时器中断使能,当 TF0 置 1 时将产生一个中断,但在 TH0 中的重载值不会改变。在允许定时器正确计数开始之前,TL0 必须初始化为所需要的值。

除了自动重载功能外,工作模式2中的计数器/定时器的使能和配置方式同模式0和1是相同的。

当作为定时器应用时,可配置寄存器 TMCON.0(T0FD)来选择定时器时钟源被系统时钟 Fosc 分频的比例。

定时器/计数器工作模式2:自动重载的8位定时器/计数器


工作模式 3: 两个 8 位计数器/定时器 (仅限于定时器 0)

在工作模式 3 中,定时器 0 用作两个独立的 8 位计数器/定时器,分别由 TL0 和 TH0 控制。TL0 通过定时器 0 的控制位(在 TCON 中)和状态位(在 TMOD 中): TR0、C/T0、GATE0、TF0 控制。定时器 0 可通过 T0 的 TMOD.2(C/T0)来选择是定时器模式还是计数器模式。

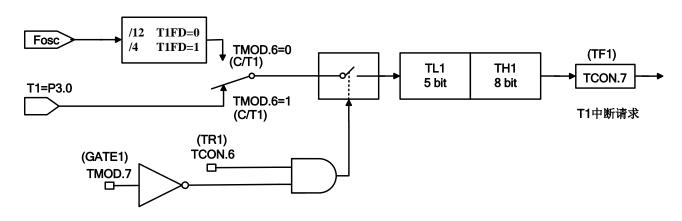
TH0 通过定时器 1 的控制 TCON 来设置相关的控制,但 TH0 仅被限定为定时器模式,无法通过 TMOD.1(T1FD)来设定为计数器模式。TH0 由定时器控制位 TR1 的控制使能,需设定 TR1=1。当发生溢出及产生中断时,TF1 会置 1,并按 T1 发生中断来进行相应的处理。

在 T0 被设为工作模式 3 时,TH0 定时器占用了 T1 的中断资源及 TCON 中寄存器,T1 的 16 位计数器会停止计数,相当于"TR1=0"。当采用 TH0 定时器工作时,需设置 TR1=1。

定时器/计数器工作模式3:2个8位定时器/计数器

10.3 T1 工作模式

通过对寄存器 TMOD 中的 M11、M01(TMOD[5]、TMOD[4])的设置,定时器/计数器 1 可实现 3 种不同的工作模式。

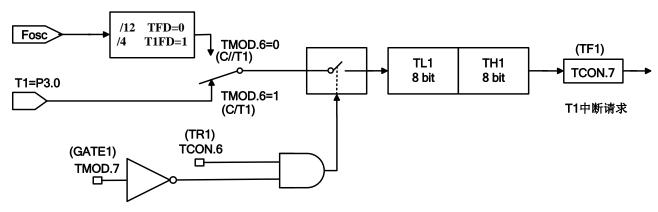

工作模式 0:13 位计数器/定时器。

TH1 寄存器存放 13 位计数器/定时器的高 8 位(TH1.7~TH1.0); TL1 存放低 5 位(TL1.4~TL1.0)。TL1 的高三位(TL1.7~TL1.5)是不确定值,读取时应被忽略掉。当 13 位定时器计数器递增溢出时,系统会将定时器溢出标志 TF1 置 1。如果定时器 1 中断被允许,将会产生一个中断。C/T1 位选择计数器/定时器的时钟源。

如果 C/T1=1, 定时器 1 输入脚 T1(P3.0)的电平从高到低的变化,会使定时器 1 数据寄存器加 1。如果 C/T1=0,选择系统时钟的分频为定时器 1 的时钟源。

当 GATE1=0, TR1 置 1 打开定时器。TR1 置 1 并不强行复位定时器,意味着如果 TR1 置 1,定时器寄存器将从上次 TR1 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

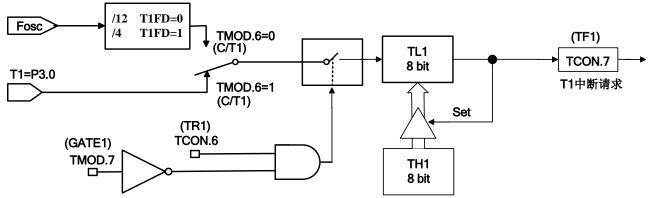
当作为定时器应用时,可配置 T1FD 来选择时钟源的分频比例。



定时器/计数器工作模式0: 13位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL1 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。



定时器/计数器工作模式1:16位定时器/计数器

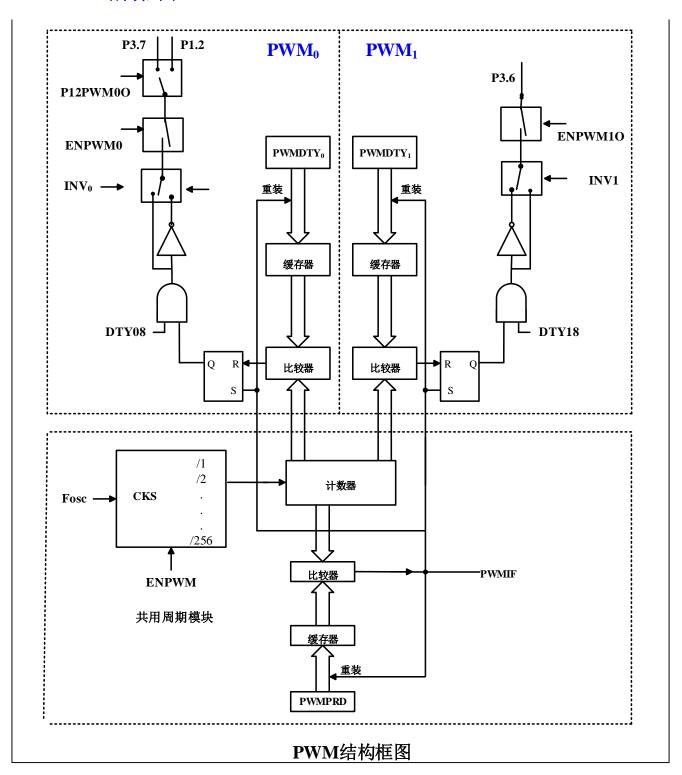
工作模式 2:8位自动重载计数器/计数器

在工作模式 2 中, 定时器 1 是 8 位自动重载计数器/定时器。TL1 存放计数值, TH1 存放重载值。当在 TL1 中的计数器溢出至 0x00 时, 定时器溢出标志 TF1 被置 1, 寄存器 TH1 的值被重载入寄存器 TL1 中。如果定时器中断使能, 当 TF1 置 1 时将产生一个中断, 但在 TH1 中的重载值不会改变。在允许定时器正确计数开始之前, TL1 必须初始化为所需要的值。

除了自动重载功能外,工作模式 2 中的计数器/定时器的使能和配置方式同方式 0 和 1 是相同的。 当作为定时器应用时,可配置寄存器 TMCON.4(T1FD)来选择定时器时钟源被系统时钟 Fosc 分频的比例。

定时器/计数器工作模式2:自动重载的8位定时器/计数器

11 PWM


SC91F711 提供了一个独立的计数器, 它可以支持两路的 PWM 输出: PWM0 及 PWM1。 SC91F711 的 PWM 具有的功能为:

- ① 8位 PWM 精度
- ② PWM0/PWM1 周期相同,但占空比可单独设置
- ③ 输出可设置正反向
- ④ 提供 1 个 PWM 溢出的中断。

SC91F711 的 PWM 可支持周期及占空比的调整,寄存器 PWMCR 控制 PWM0 和 PWM1 相关设置,PWMCFG 设置 PWM 计数器计数时钟源及输出电平,PWMPRD 设置两个 PWM 共同的周期,PWMDTY0 和PWMDTY1 分别控制 PWM0 和 PWM1 的占空比。

11.1 PWM 结构框图

11.2 PWM 相关 SFR 寄存器

PWMCR (F8h)PWM 控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENPWM	PWMIF	-	-	DTY18	ENPWM10	DTY08	ENPWM00
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	X	X	0	0	0	0

位编号	位符号	说明
7	ENPWM	PWM 模块开关控制(Enable PWM)
		1: 允许 Clock 进到 PWM 单元, 开始 PWM 的工作
		0: 关闭 PWM 单元的工作, 主要是为了省电
6	PWMIF	PWM 中断请求标志位(PWM Interrupt Flag)
		当 PWM 计数器溢出时(也就是说: 数到超过 PWMPRD 时), 此位会被
		硬件自动设定成 1。如果此时 IE[5] (EPWM) 也是被设定成 1, PWM
		的 中断产生 。在 PWM 中断发生后, 硬件并不会自动清除此位, 此位
		必须由使用者的软件负责清除。
3	DTY18	强制 PWM1 固定输出高(Force PWM1 as HIGH)
		1: 强制把 PWM1 的输出固定为 1
		0: PWM1 的输出由 PWM 计数器以及 PWMDTY1 来决定
2	ENPWM10	PWM1 功能开关
		1: P3.6 作为 PWM1 的输出
		0: P3.6 维持 GPIO 的功能
1	DTY08	强制 PWM0 固定输出高(Force PWM0 as HIGH)
		1: 强制把 PWM0 的输出固定为 1
_		0: PWM0 的输出由 PWM 计数器以及 PWMDTY0 来决定
0	ENPWM0O	PWM0 功能开关
		1: 允许 PWM0 输出到 IO, 其输出的管脚选择需配合 PWMCFG.6 中的
		P12PWM0 的设置
	F. 4. N	0: PWM0 不输出到 IO
5,4	保留位	保留位

SFR PWMPRD[7:0] 是两路 PWM 共享的周期设置控制器。 每当 PWM 计数器数到 PWMPRD[7:0]预先设置的值时,下一个 PWM CLK 到来时该计数器会跳数到 00h, 也就是说 PWM1 及 PWM0 的周期都是 (PWMPRD[7:0] + 1)*PWM 时钟。

PWMPRD (F9h) PWM 周期设置寄存器(读/写)

	\ · · /		14 1111 121- 4					
位编号	7	6	5	4	3	2	1	0
符号				PWMP	RD[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7~0	PWMPRD[7:0]	PWM0 和 PWM1 共用的周期设置;
		此数值代表 PWM0 和 PWM1 输出波形的 (周期 – 1); 也就是说 PWM 输
		出的周期值为(PWMPRD[7:0] + 1) * PWM 时钟;

PWM 计数器的计数时间可由 PWMCFG[2:0] 所控制,分别可以选择不同个数的系统时钟去计数一个单位 (pre-scalar selector),即选择 PWM 计数器时钟源被系统时钟 Fosc 分频的分频比。PWM1 和 PWM0 还可以被 PWMCFG[5:4]中的 INV1 和 INV0 来选择, PWM 输出是否反向。

PWMCFG (FCh) PWM 设置寄存器(读/写)

_		· /							
Ī	位编号	7	6	5	4	3	2	1	0

符号	-	P12PWM 0	INV1	INV0	-		CKS[2:0]	
读/写	-	读/写	读/写	读/写	-	读/写		
上电初始值	X	0	0	0	X	0	0	0

位编号	位符号	说明					
6	P12PWM0	PWM0 的输出口选择					
		0: PWM0 输出到 P3.7					
		1: PWM1 输出到 P1.2					
5	INV1	PWM1 输出反向控制(INVerse PWM1 Output)					
		1: 把 PWM1 的输出反向					
		0: PWM1 的输出不反向					
4	INV0	PWM0 输出反向控制(INVerse PWM0 Output)					
		1: 把 PWM0 的输出反向					
		0: PWM0 的输出不反向					
2~0	CKS	PWM 时钟源选择(PWM ClocK source Selector)					
		000: Fosc					
		001: Fosc/2					
		010: Fosc/4					
		011: Fosc/8					
		100: Fosc/32					
		101: Fosc/64					
		110: Fosc/128					
		111: Fosc/256					
7,3	保留位	保留位					

PWMDTY1 (FAh) PWM1 高电平设置寄存器(读/写)

	. ()	1.4 🖸 1 54		2 . •				
位编号	7	6	5	4	3	2	1	0
符号				PWMD	ГҮ1[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PWMDTY1[7:0]	PWM1 占空比长度设置;
		PWM1 的高电平宽度 是 (PWMDTY1[7:0])个 PWM 时钟

PWMDTY0 (FBh) PWM0 高电平设置寄存器(读/写)

	- (- 1 7 - 2		2 · · ·				
位编号	7	6	5	4	3	2	1	0
符号				PWMD	ГҮ0[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PWMDTY0[7:0]	PWM0 占空比长度设置;
		PWM10 的高电平宽度 是 (PWMDTY0[7:0])个 PWM 时钟

IE (A8h) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	EPWM	-	ET1	-	ET0	-
读/写	读/写	读/写	读/写	-	读/写	-	读/写	-

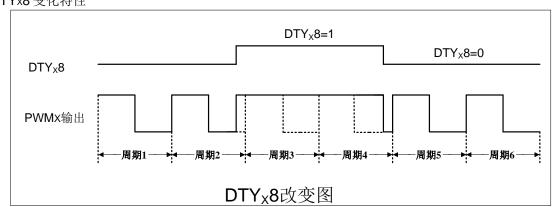
上电初始值	0	0	0	X	0	X	0	X

位编号	位符号	说明
5	EPWM	PWM 中断使能控制 0: 关闭 PWM 中断 1: 允许 PWM 计数器溢出时产生中断

IP (B8h) 中断优先权寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ı	IPADC	IPPWM	-	IPT1	-	IPT0	-
读/写	-	读/写	读/写	-	读/写		读/写	-
上电初始值	X	0	0	X	()	X	0	X

位编号	位符号	说明
5	IPPWM	PWM 中断优先权选择 0: 设定 PWM 的中断优先级是"低" 1: 设定 PWM 的中断优先级是"高"

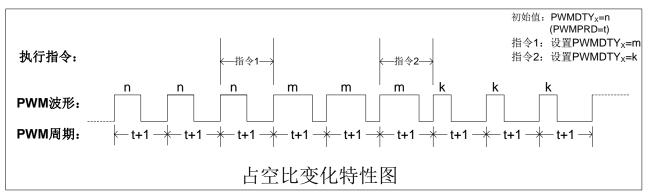

注意事项:

- 1. ENPWM 位能控制 PWM 模块是否工作。
- 2. ENPWMxO 位能选择 PWMx 口作为 GPIO 还是作为 PWMx 输出。
- 3. EPWM(IE.5)位能控制 PWM 是否被允许产生中断。
- 4. 如果 ENPWM 置 1,PWM 模块被打开,但PWMxO=0,两个PWM 输出被关闭并作为GPIO口。此时PWM 模块可以作为一个8位Timer使用,此时EPWM(IE.5)被置 1,PWM 仍然会产生中断。
- 5. 两个 PWM 共用周期,溢出时产生 PWM 中断是同一中断向量。

11.3 PWM 波形及用法

各 SFR 参数改变对 PWM 波形影响如下所述:

①DTYx8 变化特性

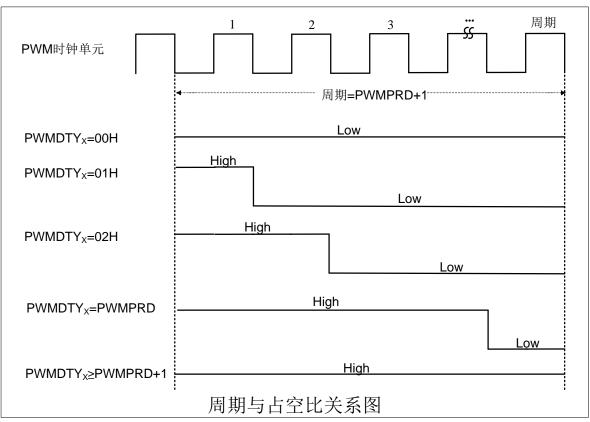


当 PWMx输出波形时,若 DTYx8(PWMCR.1/ PWMCR.3)改变,PWMx波形会立即改变。如上图所示,在周期 2 中使 DTYx8 置 1,PWMx会立即响应,固定输出高;在周期 4 某处 DTYx8 清 0,PWMx立即响应,取消固定输出。

②占空比变化特性



当 PWMx 输出波形时,若需改变占空比,可通过改变高电平设置寄存器(PWMDTYx)的值实现。但需要注意,更改 PWMDTYx 的值,占空比不会立即改变,而是等待本周期结束,在下个周期发生改变。相关波形输出如上图所示。


③周期变化特性

当 PWMx 输出波形时,若需改变周期,可通过改变周期设置寄存器 PWMPRD 的值实现。同改变占空比一样,更改 PWMPRD 的值,周期不会立即改变,而是等待本周期结束,在下个周期改变,参考上图所示。

④周期和占空比的关系

周期和占空比的关系如上图所示。该结果的前提是 PWMx(x=0, 1) 输出反向控制(INVx)初始为 0, 若需得到相反结果,可置 PWMCFG.5(INV1)和 PWMCFG.4(INV0)为 1。需要注意 INVx 的变化特性也 DTYx8 相同,更改则立即响应。

12 GP I/O

SC91F711 提供了最多 6 个 GPIO 端口,此 6 个 IO 同其他功能复用。SC91F711 的 I/O 口和标准 8051 的 I/O 口一样,是带强推挽输出的双向 IO 口,有四种 IO 模式可以选择:准双向 IO 模式、强推挽输出模式、高阻仅输入、N型开漏输出模式。

准双向 IO 结构: 也就是说,当对一个 I/O 口写 "0" 时,它有很强 (>15mA)的推低(Sink)能力,并且使用者此时应该把该 I/O 口视为输出"Output",但是如果对该 I/O 口写"1"后,该 I/O 口会有短暂的强上拉(两个 clock 周期),之后就一直以弱上拉的状况保持该 I/O 口为高输出,而此时允许使用者从外部输入信号,盖过该弱上拉.简单说,写"0"代表强的"Output",写"1"代表"Input"。

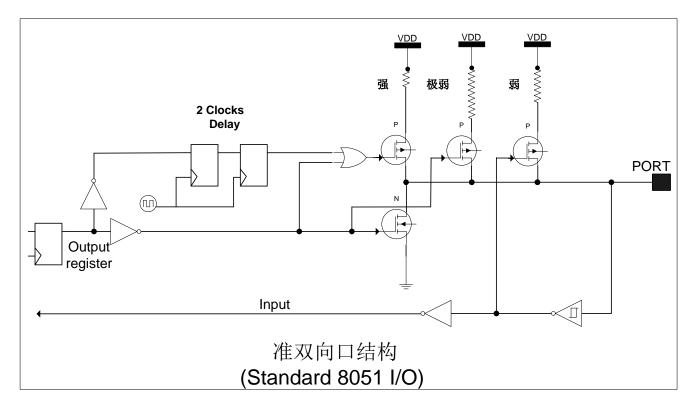
强推挽结构: 若是有特别的强推挽输出需要,使用者可以设定对应的寄存器 PxCFGn, 让 I/O 口输出很强的"1", 而非"允许被盖过的 1",且具有较强的电流驱动能力。

高阻仅输入结构:高阻态,仅作为口输入使用。

N型开漏输出结构: IC内部的上拉电阻断开,需要外接上拉电阻。

12.1 GPIO 结构图

1. 准双向模式(Quasi-Bi)

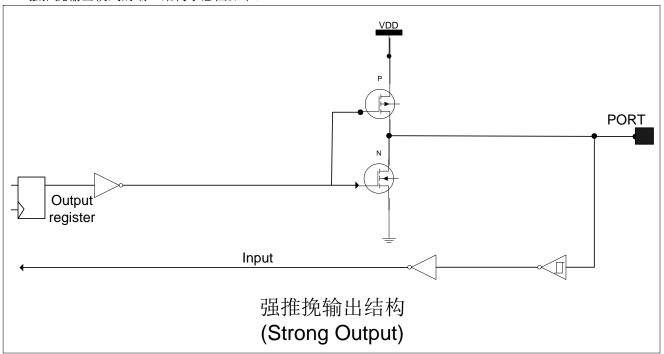

准双向口有 3 个上拉的 MOS 管以适应不同的需要,分别称为"弱(Weak)上拉"、"极弱(Very weak)上拉"和"强(Strong)上拉"。

在 3 个上拉 MOS 管中,有 1 个上拉 MOS 管称为"弱上拉",当口线寄存器为 1 且引脚本身也为 1 时打开。此上拉提供基本驱动电流使准双向口输出为 1。如果 1 个引脚输出为 1 而由外部装置下拉到低时,弱上拉关闭而"极弱上拉"维持开状态,为了把这个引脚强拉为低,外部装置必须有足够的灌电流能力使引脚上的电压降到门槛电压以下。

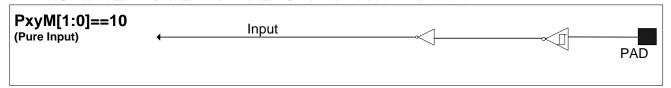
第 2 个上拉 MOS 管称为"极弱上拉",当口线锁存为 1 时打开。当引脚悬空时,这个极弱的上拉源产生很弱的电流将引脚上拉为高电平。

第3个上拉 MOS 管称为"强上拉",当口线锁存器由0跳变为1时,这个上拉用来加快准双向口由逻辑0到逻辑1转换。当发生这种情况时,强上拉打开约2个机器周期以使引脚能迅速地上拉到高电平。

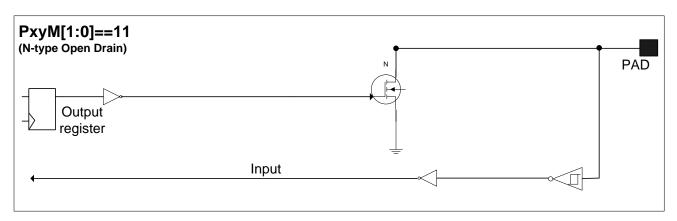
准双向模式的端口结构示意图如下:



2. 强推挽输出模式


强推挽输出配置的下拉结构与开漏输出与准双向口的下拉结构相同,但当锁存器为 1 时能提供持续的强上拉,即能够提供持续的大电流驱动(大于 15mA)的输出高。

强推挽输出模式的端口结构示意图如下:


3, 仅输入模式(Input only)高阻

此种模式仅有输入,没有输出能力。仅输入模式的端口结构示意图如下所示:

4, 开漏输出模式(Open Drain)

此种模式没有输出高的能力。如果需要输出高,用户必须外接上拉电阻。此时外加引脚的电压不能超过 VDD+0.3V。开漏输出模式的端口结构示意图如下:

12.2 I/O 端口相关寄存器

P1CFG0 (92h) P1 口模式配置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	P12M	I [1:0]	-		P10M[1:0]	
读/写	-	-	读/写	读/写	-	-	读/写	读/写
上电初始值	X	X	0	0	X	X	0	0

P3CFG1 (B1h) P3 口模式配置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P37M	I [1:0]	P36N	I [1:0]		-		-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	X	X	X	X

P3CFG0 (B2h) P3 口模式配置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		-	-	-	P31	M[1:0]	P30	M[1:0]
读/写	-	-	-	-	读/写	读/写	1	-
上电初始值	X	X	X	X	0	0	0	0

位编号	位符号	说明
7~0	P1xM[1:0] (x=0,2)	P1 口模式配置 00: P1x 的特性同标准 8051 MCU 的 I/O 口,即是准双向 IO 口 01: 强制 P1x 口 有很强的输出高驱动能力 10: P1x 为高阻仅输入模式
7~0	P3xM[1:0] (x=0~1,6~7)	11: P1x 为 N 型开漏模式 P3 口模式配置 00: P3x 的特性同标准 8051 MCU 的 I/O 口,即是准双向 IO 口 01: 强制 P3x 口 有很强的输出高驱动能力 10: P3x 为高阻仅输入模式 11: P3x 为 N 型开漏模式

P1 (90h) P1 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	P1.2	-	P1.0
读/写	-	-	-	-	-	读/写	-	读/写
上电初始值	X	X	X	X	X	1	X	1

P3(B0h) P3 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3.7	P3.6	-	-	-	-	P3.1	P3.0
读/写	读/写	读/写	-	-	-	-	读/写	读/写
上电初始值	1	1	X	X	X	X	1	1

位编号	位符号	说明
3~0	P1.x (x=0,2)	P1 口锁存寄存器数据
7~0	P3.x (x=0~1,6~7)	P3 口锁存寄存器数据

12.3 I/O 端口复用

管脚 编号	复用功能	复用功能说明	控制位符号 (SFR 寄存器地址)	控制位设置		
2	RST	系统复位脚 RST	DISRST	DISRST=0		
	P1.0	GPIO P1.0	RSTCFG.2(F7h)	DISRST=1		
	INT2	外部中断 2		EA=1 且 EXIE.2(B3h)=1		
3	PWM0B	PWM0 的另一输出口	PWMCFG.6(FCh)	P12PWM0=1		
	INT4	外部中断 4		EA=1 且		
				EXIE.4(B3h)=1		
	P1.2	GPIO P1.2				
4	PWM0A	PWM0 的输出	ENPWM0O	ENPWM0O=1		
	AIN7	ADC 输入选择通道 7	PWMCR.0(F8h)	RP37U=1		
	P3.7	GPIO P3.7	RP37U	ENPWM0O=0 且		
			P3ADC.7 (B2h)	RP37U=0		
5	PWM1A	PWM1 的输出	ENPWM0O	ENPWM1O=1		
	AIN6	ADC 输入选择通道 6	PWMCR.2(F8h)	RP36U=1		
	P3.6	GPIO P3.6	RP36U P3ADC.6 (B2h)	ENPWM1O=0 且 RP36U=0		
6	AIN1	ADC 输入选择通道 1	RP31U P3ADC.2 (B2h)	RP31U=1		
	Т0	T0 的外部输入脚				
	INT1	外部中断1		EA=1 且 EXIE.1(B3h)=1		
	P3.1	GPIO P3.1				
7	AIN0	ADC 输入选择通道 0	RP30U P3ADC.2 (B2h)	RP30U=1		
	T1	T1 的外部输入脚				

INT0	外部中断 0	EA=1 且 EXIE.0(B3h)=1
P3.0	GPIO P3.0	

13 模数转换 ADC

SC91F711 内建一个 10-bit 4 通道的高精度逐次逼近型 ADC。

ADC 的参考电压可以有 2 种选择:

- ①是 VDD 管脚(即直接是内部的 VDD);
- ②是内部 Regulator 输出的参考电压精准的 2.4V;

13.1 ADC 相关寄存器

ADCCFG (C4h)ADC 参考电压配置寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	VRI	EFS[1:0]
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	X	X	X	X	X	X	n	n

位编号	位符号	说明
1~0	VREFS[1:0]	参考电压选择(初始值从 Code Option 调入,用户可修改设置)
		00:设定 VREF 为 VDD
		01: 设定 VREF 为 内部准确的 2.4V
		10: 保留
		11: 保留

P3ADC (B6h) P3 和 ADC 切换设置寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	RP37U	RP36U	-	-	-	-	RP31U	RP30U
读/写	读/写	读/写	-	-	-	-	读/写	读/写
上电初始值	0	0	X	X	X	X	0	0

位编号	位符号	说明
7~0	RP3xU (x=0~1,6~7)	移除 PORT3.x 口的内部上拉电阻,使对应的 IO 作为 ADC 的输入口。 0: PORT3.x 口为 GPIO 1: PORT3.x 口为 ADC 输入口

ADCCR (C5h)ADC 转换控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	ADCEN	ADCKS[1:0]		EOC/	ADCS	ADCIS[2:0]		
				ADCIF				
读/写	读/写	读/写	读/写	读/写	写 1	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ADCEN	启动 ADC 的电源
		0: 关闭 ADC 模块电源
		1: 开启 ADC 模块电源
6~5	ADCKS[1:0]	ADC 时钟频率选择(ADC ClocKs Selector)
		00: 设定 ADC 所使用的 clock 频率为 Fosc

	01: 设定 ADC 所使用的 clock 频率为 Fosc/2
	10: 设定 ADC 所使用的 clock 频率为 Fosc/4
	11: 设定 ADC 所使用的 clock 频率为 Fosc/6
	ADC 转化需要 89 个 ADC CLOCK 完成
EOC /ADCIF	转换完成/ADC 中断请求标志(End Of Conversion / ADC Interrupt Flag)
	0: 转换尚未完成
	1: ADC 转换完成。需用户软件清除
	ADC 转换完成标志 EOC: 当使用者设定 ADCS 开始转换后, 此位会被硬
	件自动清除为0; 当转换完成后,此位会被硬件自动置为1;
	ADC 中断请求标志 ADCIF:
	此位同时也当作是 ADC 中断的中断请求标志,如果用户使能 ADC 中
	断, 那么在 ADC 的 中断 发生后, 用户必须用软件清除此位。
ADCS	ADC 开始触发控制(ADC Start)
	对此 bit 写 "1", 开始做一次 ADC 的转换, 即该位只是 ADC 转换的触发
	信号。此位只可写入1有效。
ADCIS	ADC 输入通道选择(ADC Input Selector)
	000: 选用 P3.0 当作 ADC 的输入
	001: 选用 P3.1 当作 ADC 的输入
	110: 选用 P3.6 当作 ADC 的输入
	111: 选用 P3.7 当作 ADC 的输入
	ADCS

ADCVH (C6h)ADC 转换数值寄存器(高 8 位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号		ADCV[9:2]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	1	0	0	0	0	0	0	0

ADCVL (C7h) ADC 转换数值寄存器(低 2 位) (读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	ADO	CV[1:0]
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	X	X	X	X	X	X	0	0

位编号	位符号	说明
7~0	ADCV[9:2]	ADC 转换值的高 8 位数值
2~0	ADCV[1:0]	ADC 转换值的低 2 位数值

IE (A8h) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	EPWM	-	ET1	_	ET0	-
读/写	读/写	读/写	读/写	-	读/写	_	读/写	-
上电初始值	0	0	0	X	0	X	0	X

位编号	位符号	说明
6	EADC	ADC 中断使能控制
		0: 不允许 EOC/ADCIF 产生中断
		1: 允许 EOC/ADCIF 产生 中断

IP (B8h) 中断优先权寄存器(读/写)

位编号	7	6	5	4	3	2	1	0

符号	-	IPADC	IPPWM	-	IPT1	-	IPT0	-
读/写	读/写	读/写	读/写	-	读/写	-	读/写	-
上电初始值	0	0	0	X	0	X	0	X

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择 0: 设定 ADC 的中断优先级是"低"
		1:设定 ADC 的中断优先级是"高"

13.2 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- ① 设定对应管脚为 ADC 输入; (设定 RP3xU 对应的位为 ADC 输入,通常 ADC 管脚会预先固定)
- ② 设定 ADC 参考电压 Vref, 设定 ADC 转换所用的频率
- ③ 开启 ADC 模块电源;
- ④ 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道)
- ⑤ 启动 ADCS, 转换开始
- ⑥ 等待 EOC/ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 EOC/ADCIF 标志
- ⑦ 从 ADCVH、ADCVL 获得 10 位数据,先高位后低位,一次转换完成
- ⑧ 如不换输入通道,则重 5~7 的步骤,进行下一次转换

注意事项:在设定 IE[6](EADC)前,使用者最好用软件先清除 EOC/ADCIF,并且在 ADC 中断服务程序执行完时,也清除该 EOC/ADCIF,以避免不断的产生 ADC 中断。

14 IAP 操作

SC91F711 内部有 128B Flash 可以进行 In Application Programming(IAP)操作,即允许用户程序动态的 把数据写入内部的 Flash, 即作为 EEPROM 使用。

用户使用 IAP 时, 只能把数据写入内部 2K Flash ROM 的最高地址的 128 Bytes (0780H ~ 07FFH)。

14.1 IAP 操作相关寄存器

IAP 相关 SFR 寄存器说明:

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
IAPKEY	EAH	IAP 保护寄存器		IAPKEY[7:0]					00000000ь		
IAPADL	ECH	IAP 地指低位		IAPADR[7:0]							11111111b
IAPDAT	EDH	IAP 写入/读出 资料		IAPDAT[7:0]						11111111b	
IAPCTL	ЕЕН	IAP 命令	-	-	-	-	PAYT:		CMD	0[1:0]	xxxx0000b

IAPKEY(EAH) IAP 保护寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		IAPKEY[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明			
7~0	IAPKEY[7:0]	打开 IAP 功能及 IAP 操作时限设置 写入一个非零值 n,则代表意思为: ①打开 IAP 功能; ②n 个系统时钟 后如果接收不到 IAP 写入命令,则 IAP 功能被重新关闭;			

IAPADL (ECH) IAP 写入地址低 8 位寄存器

位编号	7	6	5	4	3	2	1	0	
符号		IAPADR[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	1	1	1	1	1	1	1	1	

位编号	位符号	说明
7~0	IAPADR[7:0]	IAP 写入地址的低 8 位

IAPDAT (EDH) IAP 数据寄存器

位编号	7	6	5	4	3	2	1	0	
符号		IAPDAT[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	1	1	1	1	1	1	1	1	

位编号	位符号	说明
7~0	IAPDAT	IAP写入的数据

IAPCTL (EEH) IAP 控制寄存器

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	PAYTIMES[1:0]		CMD[1:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写

上电初始值	X	X	X	X	0	0	0	0

位编号	位符号		说	明				
3~2	PAYTIMES[1:0]	IAP 写入操作时,C	PU Hold Time 时间	可长度设定				
		系统时钟 设定值	16Mhz	4Mhz	1Mhz			
		00	4ms					
		01	2ms	4ms				
		10	1ms	2ms	4ms			
		11		0.5ms	1ms			
		说明: CPU Hold f	的是 PC 指针,其	他功能模块继续工	工作;中断标志会被			
		保存,并在 Hold 结	東后进入中断,在	旦多次的中断只能	保留最后一次。			
		选择建议: 16Mhz,	可选择 01 或者	10				
		4Mhz,	可选择 10 或者 0	1				
		1Mhz,	可选择 11					
1~0	CMD[1:0]	IAP写入操作命令						
		00 := (保留)						
		01 := (保留)						
		10 := 写入						
		11 := (保留)						

14.2 IAP 操作流程

SC91F711 的 IAP 写入流程如下:

- ① 写入 IAPDAT[7:0](准备好 IAP 写入的数据);
- ② 写入 {IAPADR[11:8], IAPADR[7:0]}(准备好 IAP 操作的目标地址, IAPADR[11:8]固定为 1);
- ③ 写入 IAPKEY[7:0] 写入一个非 0 的值 n (打开 IAP 保护,且在 n 个系统时钟内没收到写入命令 IAP 会被关闭);
- ④ 写入 IAPCTL[3:0](设定 CPU Hold 时间,写入 CMD[1:0]为 1、0,CPU Hold 并启动 IAP 写入);
- ⑤ IAP 写入结束, CPU 继续后续操作;

注意事项:利用 MOVC 指令,用户可以读取此部分 IAP 写入的数据。

14.3 IAP 读写范例程序

#include "intrins.h" unsigned char code *POINT=0x0780; unsigned char DATA1,ADDR1;

IAP 写操作 C 的 Demo 程序:

IAPDAT=DATA1; //送数据 DATA1 到 IAP 数据寄存器

IAPADL=ADDR1; //写入地址值 ADDR1

IAPKEY=0xf0; //此值可根据实际调整;需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

// 开启中断时要特别注意

IAPCTL=0x0a; //执行 IAP 写入操作,1ms@16M

Page 45 of 53V 1.2深圳市赛元微电子有限公司http://www.socmcu.com

nop(); //等待(至少需要 1 个_nop_())

nop();

nop();

nop();

IAP 读操作 C 的 Demo 程序:

DATA1=*(POINT+ADDR1); //读取 ADDR1 的值到 DATA1

IAP 读操作汇编的 Demo 程序:

MOV DPTR,#0780H; //DPTR 赋初值 MOV A, ADDR1; //地址值送 A

MOVC A, @A+DPTR; //读取 ADDR1 的值到 A

15 电气特性

15.1 极限参数

符号	参数	最小值	最大值	UNIT
VDD/VSS	直流供电电压	-0.3	5.5	V
Voltage ON any Pin	任一管脚输入/输出电压	-0.3	VDD+0.3	V
TA	工作环境温度	-40	85	℃
Tstg	储存温度	-55	125	℃

15.2 推荐工作条件

符号	参数	最小值	最大值	UNIT
VDD	工作电压	2.4	5.5	V
TA	工作环境温度	-40	85	°C

15.3 直流电气特性

(VDD = 5V, TA = +25℃, 除非另有说明)

(VDD = 3V, TA = +23						
符号	参数	最小值	典型值	最大值	单位	测试条件
电流						
Iop1	工作电流		6.0	10	mA	IRC=16MHz
Iop2	工作电流		3.0	5.0	mA	IRC=4MHz
Iop3	工作电流		2.1	4.0	mA	IRC=1MHz
Ipd	待机电流	-	0.1	1.0	uA	IRC=16M/4M/
	(Power Down 模式)					1M Hz
IO 口特性						
VIH	输入高电压	0.7VDD	-	VDD+0.5	V	
VIL	输入低电压	-0.5	-	0.3VDD	V	
VIH,RSTN	输入高电压, RSTN 脚	2.0		VDD	V	
VIL,RSTN	输入低电压, RSTN 脚	-0.2		1.5	V	
IOL1	灌电流 P1/P3		10		mA	VPin=0.4V
IOL2	灌电流 P1/P3		20		mA	VPin=0.8V
IOL3	灌电流 P1/P3		32		mA	VPin=1.5V
IOH1	输出高的电流(准双向口		50		uA	Vpin=4.7V
	模式)P1/P3					
IOH2	输出高的电流(强推挽模		10		mA	Vpin=4.3V
	式)P1/P3					
ІОН3	输出高的电流(强推挽模		5		mA	Vpin=4.7V
	式)P1/P3					
做为 ADC 参考电压的	内部基准 2.4V			•		•
VDD24	内部基准 2.4V 电压输出	2.35	2.40	2.45	V	Ta=-40~85°C
		•		•		•

(VDD = 3.3V, TA = +25℃, 除非另有说明)

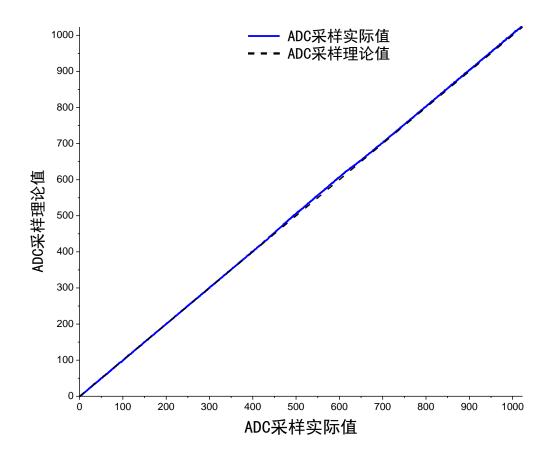
/	, 1/4/ 11 24 14 20 24					
符号	参数	最小值	典型值	最大值	单位	测试条件
电流						
Iop4	工作电流		6.0	10	mA	IRC=16MHz
Iop5	工作电流		3.0	5.0	mA	IRC=4MHz
Iop6	工作电流		2.1	4.0	mA	IRC=1MHz
Ipd2	待机电流	-	0.1	1	uA	IRC=16M/4M/
	(Power Down 模式)					1M Hz

IO 口特性						
VIH	输入高电压	0.7VDD	=	VDD+0.5	V	
VIL	输入低电压	-0.5	-	0.3VDD	V	
VIH,RSTN	输入高电压, RSTN 脚	2.0		VDD	V	
VIL,RSTN	输入低电压, RSTN 脚	-0.2		1.5	V	
IOL4	灌电流 P1/P3		7		mA	VPin=0.4V
IOL5	灌电流 P1/P3		13		mA	VPin=0.8V
IOH4	输出高的电流(准双向口		30		uA	Vpin=3.0V
	模式) P1/P3					
IOH5	输出高的电流(强推挽模		7		mA	Vpin=2.6V
	式)P1/P3					
ІОН6	输出高的电流(强推挽模		3.5		mA	Vpin=3.0V
	式)P1/P3					
做为 ADC 参考电压的	做为 ADC 参考电压的内部基准 2.4V					
VDD24	内部基准 2.4V 电压输出	2.35	2.40	2.45	V	Ta=-40~85°C

15.4 交流电气特性 (VDD = 2.5V ~ 5.5V, TA = 25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
Tosc	振荡器起振时间		5	20	us	IRC=16MHz
						VDD=5V
Treset	复位脉冲宽度	5			us	低电平有效
Firc	RC 振荡稳定性	15.84	16	16.16	MHz	VDD=3.0~5.5
						V
						TA=-40~85 °C

15.5 ADC 电气特性 (TA = 25℃, 除非另有说明)

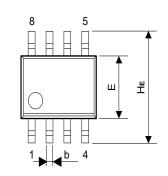

符号	参数	最小值	典型值	最大值	单位	测试条件
VAD	供电电压	2.4	5.0	5.5V	V	
Nr	精度		10		bit	GND≤VAIN≤VREF
VAIN	ADC 输入电压	GND		VDD	V	
RAIN	ADC 输入电阻	5			ΜΩ	VIN=5V
Rref	Vref 输入阻抗		13.5		ΚΩ	
Zain	模拟电压源推荐阻抗			10	ΚΩ	
IADC	ADC 转换电流		1.0		mA	ADC 模块打开
						VDD=5V
DNL	微分非线性误差		±1	±1.5	LSB	VDD=5V
INL	积分非线性误差		±3	±5	LSB	VDD=5V
Ead	总绝对误差		±3	±5	LSB	VDD=5V
TADC	ADC 转换时间					90个 ADC CLKs

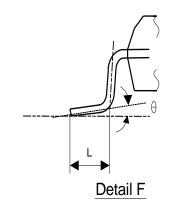
说明: ADC 曲线的线性度及一致性好,其数据的偏差值如下图发生在 2.5V(1/2Vref)的-0.4V~+0.7V(2.1V~3.2V 区间,方向及误差值稳定在+3~+8LSB,用户可在程式中对 ADC 数值进行修正,修正后的 ADC 精度能在±2LSB 以内,即实际净精度在 9 位以上。

15.6 ADC 实测曲线图

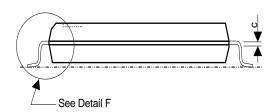
ADC 实测曲线图如下: (测试条件为: 5V, ADC CLK 频率选择为 Fosc/6, ADC 输入通道对地接 100pF 电容)

16 订购信息

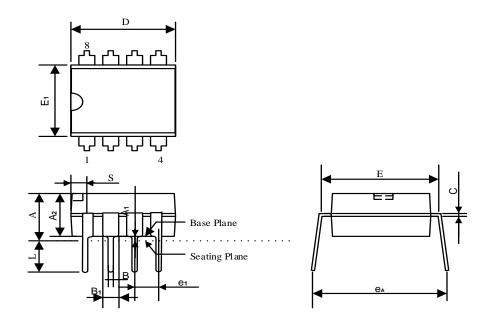

产品编号	封装	包装
SC91F711D/008DU	DIP8	管装
SC91F711M/008MU	SOP8L	管装




17 封装信息


SOP 8L(150mil) 外形尺寸

单位:毫米



<i>5</i> 55 □.		mm(毫米)				
符号	最小	正常	最大			
Α	1.45	1.60	1.75			
A1	0.10	0.15	0.20			
A2	1.35	1.45	1.55			
b		0.406				
С	0.19	0.203	0.273			
D		4.88				
S	0.50	0.535	0.60			
Е	3.70	3.91	4.10			
HE	5.80	6.00	6.20			
е		1.27(BSC)				
L	0.50	0.66	0.80			
LE		1.05(BSC)				
θ	0°	-	10°			

P-DIP 8L (300mil) 外形尺寸

单位: 毫米

Art □.	mm(毫米)						
符号	最小	正常	最大				
Α	3.60	3.80	4.00				
A1	0.51	-	-				
A2	3.00	3.30	3.40				
В	0.44	-	0.53				
B1		1.52(BSC)					
С	0.24	-	0.32				
D	9.05	9.25	9.45				
Е		7.62(BSC)					
E1	6.15	6.35	6.55				
e1		2.54(BSC)					
еа	7.62	-	9.30				
L	3.00	-	-				

18 规格更改记录

版本	记录	日期
V1.2	修正 PWM 结构图	2013年3月
	修正 PWM 部分 PWMCR 寄存器的 ENPWM1O 及 ENPWM0O 描述	
V1.1	删除 8MHz 系统时钟	2012年10月
	修正看门狗定时器 WDT 溢出时间	
	修正 IAP CPU Hold Time 值及 IAP 程序	
V1.0	初版	2012年3月